mcse {mcmcse} | R Documentation |
Compute Monte Carlo standard errors for expectations.
Description
Compute Monte Carlo standard errors for expectations.
Usage
mcse(x, size = NULL, g = NULL, r = 3, method = "bm", warn = FALSE)
Arguments
x |
a vector of values from a Markov chain of length n. |
size |
represents the batch size in “ |
g |
a function such that |
r |
The lugsail parameters ( |
method |
any of “ |
warn |
a logical value indicating whether the function should issue a warning if the sample size is too small (less than 1,000). |
Value
mcse
returns a list with three elements:
est |
an estimate of |
se |
the Monte Carlo standard error. |
nsim |
The number of samples in the input Markov chain. |
References
Flegal, J. M. (2012) Applicability of subsampling bootstrap methods in Markov chain Monte Carlo. In Wozniakowski, H. and Plaskota, L., editors, Monte Carlo and Quasi-Monte Carlo Methods 2010, pp. 363-372. Springer-Verlag.
Flegal, J. M. and Jones, G. L. (2010) Batch means and spectral variance estimators in Markov chain Monte Carlo. The Annals of Statistics, 38, 1034–1070.
Flegal, J. M. and Jones, G. L. (2011) Implementing Markov chain Monte Carlo: Estimating with confidence. In Brooks, S., Gelman, A., Jones, G. L., and Meng, X., editors, Handbook of Markov Chain Monte Carlo, pages 175–197. Chapman & Hall/CRC Press.
Doss, C. R., Flegal, J. M., Jones, G. L., and Neath, R. C. (2014). Markov chain Monte Carlo estimation of quantiles. Electronic Journal of Statistics, 8, 2448-2478. Jones, G. L., Haran, M., Caffo, B. S. and Neath, R. (2006) Fixed-width output analysis for Markov chain Monte Carlo. Journal of the American Statistical Association, 101, 1537–154.
See Also
mcse.mat
, which applies mcse
to each column of a matrix or data frame.
mcse.multi
, for a multivariate estimate of the Monte Carlo standard error.
mcse.q
and mcse.q.mat
, which compute standard errors for quantiles.
Examples
## Bivariate Normal with mean (mu1, mu2) and covariance sigma
n <- 1e3
mu = c(2, 50)
sigma = matrix(c(1, 0.5, 0.5, 1), nrow = 2)
out = BVN_Gibbs(n, mu, sigma)
x = out[,1]
mcse(x)
mcse.q(x, 0.1)
mcse.q(x, 0.9)
# Estimate the mean, 0.1 quantile, and 0.9 quantile with MCSEs using overlapping batch means.
mcse(x, method = "obm")
mcse.q(x, 0.1, method = "obm")
mcse.q(x, 0.9, method = "obm")
# Estimate E(x^2) with MCSE using spectral methods.
g = function(x) { x^2 }
mcse(x, g = g, method = "tukey")