MclustMEM {mclustAddons} | R Documentation |
Modal EM algorithm for Gaussian Mixtures fitted via mclust package
Description
Modal-clustering estimation by applying the Modal EM algorithm to Gaussian mixtures fitted using the mclust package.
Usage
MclustMEM(mclustObject, data = NULL, ...)
## S3 method for class 'MclustMEM'
print(x, digits = getOption("digits"), ...)
## S3 method for class 'MclustMEM'
summary(object, ...)
Arguments
mclustObject |
An object of class |
data |
If provided, a numeric vector, matrix, or data frame of observations. If a matrix or data frame, rows correspond to observations ( |
x , object |
An object of class |
digits |
The number of significant digits to use for printing. |
... |
Further arguments passed to or from other methods. |
Value
Returns an object of class 'MclustMEM'
. See also the output returned by GaussianMixtureMEM
.
Author(s)
Luca Scrucca
References
Scrucca L. (2021) A fast and efficient Modal EM algorithm for Gaussian mixtures. Statistical Analysis and Data Mining, 14:4, 305–314. https://doi.org/10.1002/sam.11527
See Also
GaussianMixtureMEM
, plot.MclustMEM
.
Examples
data(Baudry_etal_2010_JCGS_examples, package = "mclust")
plot(ex4.1)
GMM <- Mclust(ex4.1)
plot(GMM, what = "classification")
MEM <- MclustMEM(GMM)
MEM
summary(MEM)
plot(MEM)
plot(ex4.4.2)
GMM <- Mclust(ex4.4.2)
plot(GMM, what = "classification")
MEM <- MclustMEM(GMM)
MEM
summary(MEM)
plot(MEM, addDensity = FALSE)