GaussianMixtureMEM {mclustAddons} | R Documentation |
Modal EM algorithm for Gaussian Mixtures
Description
A function implementing a fast and efficient Modal EM algorithm for Gaussian mixtures.
Usage
GaussianMixtureMEM(data, pro, mu, sigma,
control = list(eps = 1e-5,
maxiter = 1e3,
stepsize = function(t) 1-exp(-0.1*t),
denoise = TRUE,
alpha = 0.01,
keep.path = FALSE),
...)
Arguments
data |
A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations ( |
pro |
A |
mu |
A |
sigma |
A |
control |
A list of control parameters:
|
... |
Further arguments passed to or from other methods. |
Value
Returns a list containing the following elements:
n |
The number of input data points. |
d |
The number of variables/features. |
parameters |
The Gaussian mixture parameters. |
iter |
The number of iterations of MEM algorithm. |
nmodes |
The number of modes estimated by the MEM algorithm. |
modes |
The coordinates of modes estimated by MEM algorithm. |
path |
If requested, the coordinates of full paths to modes for each data point. |
logdens |
The log-density at the estimated modes. |
logvol |
The log-volume used for denoising (if requested). |
classification |
The modal clustering classification of input data points. |
Author(s)
Luca Scrucca
References
Scrucca L. (2021) A fast and efficient Modal EM algorithm for Gaussian mixtures. Statistical Analysis and Data Mining, 14:4, 305–314. https://doi.org/10.1002/sam.11527