EntropyGMM {mclustAddons}R Documentation

Gaussian mixture-based estimation of entropy

Description

Compute an estimate of the (differential) entropy from a Gaussian Mixture Model (GMM) fitted using the mclust package.

Usage


EntropyGMM(object, ...) 

## S3 method for class 'densityMclust'
EntropyGMM(object, ...)
## S3 method for class 'Mclust'
EntropyGMM(object, ...)
## S3 method for class 'densityMclustBounded'
EntropyGMM(object, ...)
## S3 method for class 'matrix'
EntropyGMM(object, ...)
## S3 method for class 'data.frame'
EntropyGMM(object, ...)

EntropyGauss(sigma)

nats2bits(x)
bits2nats(x)

Arguments

object

An object of class 'Mclust', 'densityMclust', or 'densityMclustBounded', obtained by fitting a Gaussian mixture via, respectively, Mclust(), densityMclust(), and densityMclustBounded(). If a 'matrix' or 'data.frame' is provided as input, a GMM using the provided data is estimated preliminary to computing the entropy. In this case further arguments can be provided to control the fitted model (e.g. number of mixture components and/or covariances decomposition).

sigma

A symmetric covariance matrix.

x

A vector of values.

...

Further arguments passed to or from other methods.

Value

EntropyGMM() returns an estimate of the entropy based on a estimated Gaussian mixture model (GMM) fitted using the mclust package. If a matrix of data values is provided, a GMM is preliminary fitted to the data and then the entropy computed.

EntropyGauss() returns the entropy for a multivariate Gaussian distribution with covariance matrix sigma.

nats2bits() and bits2nats() convert input values in nats to bits, and viceversa. Information-theoretic quantities have different units depending on the base of the logarithm used: nats are expressed in base-2 logarithms, whereas bits in natural logarithms.

Author(s)

Luca Scrucca

References

Robin S. and Scrucca L. (2023) Mixture-based estimation of entropy. Computational Statistics & Data Analysis, 177, 107582. https://doi.org/10.1016/j.csda.2022.107582

See Also

Mclust, densityMclust.

Examples


X = iris[,1:4]
mod = densityMclust(X, plot = FALSE)
h = EntropyGMM(mod)
h
bits2nats(h)
EntropyGMM(X)

[Package mclustAddons version 0.8 Index]