simE {mclust} | R Documentation |
Simulate from a Parameterized MVN Mixture Model
Description
Simulate data from a parameterized MVN mixture model.
Usage
simE(parameters, n, seed = NULL, ...)
simV(parameters, n, seed = NULL, ...)
simEII(parameters, n, seed = NULL, ...)
simVII(parameters, n, seed = NULL, ...)
simEEI(parameters, n, seed = NULL, ...)
simVEI(parameters, n, seed = NULL, ...)
simEVI(parameters, n, seed = NULL, ...)
simVVI(parameters, n, seed = NULL, ...)
simEEE(parameters, n, seed = NULL, ...)
simVEE(parameters, n, seed = NULL, ...)
simEVE(parameters, n, seed = NULL, ...)
simVVE(parameters, n, seed = NULL, ...)
simEEV(parameters, n, seed = NULL, ...)
simVEV(parameters, n, seed = NULL, ...)
simEVV(parameters, n, seed = NULL, ...)
simVVV(parameters, n, seed = NULL, ...)
Arguments
parameters |
A list with the following components:
|
n |
An integer specifying the number of data points to be simulated. |
seed |
An optional integer argument to |
... |
Catches unused arguments in indirect or list calls via |
Details
This function can be used with an indirect or list call using
do.call
, allowing the output of e.g. mstep
, em
me
, Mclust
, to be passed directly without the need
to specify individual parameters as arguments.
Value
A matrix in which first column is the classification and the remaining
columns are the n
observations simulated from the specified MVN
mixture model.
Attributes: |
|
See Also
sim
,
Mclust
,
mstepE
,
mclustVariance
.
Examples
d <- 2
G <- 2
scale <- 1
shape <- c(1, 9)
O1 <- diag(2)
O2 <- diag(2)[,c(2,1)]
O <- array(cbind(O1,O2), c(2, 2, 2))
O
variance <- list(d= d, G = G, scale = scale, shape = shape, orientation = O)
mu <- matrix(0, d, G) ## center at the origin
simdat <- simEEV( n = 200,
parameters = list(pro=c(1,1),mean=mu,variance=variance),
seed = NULL)
cl <- simdat[,1]
sigma <- array(apply(O, 3, function(x,y) crossprod(x*y),
y = sqrt(scale*shape)), c(2,2,2))
paramList <- list(mu = mu, sigma = sigma)
coordProj( simdat, paramList = paramList, classification = cl)