em {mclust} | R Documentation |
EM algorithm starting with E-step for parameterized Gaussian mixture models
Description
Implements the EM algorithm for parameterized Gaussian mixture models, starting with the expectation step.
Usage
em(data, modelName, parameters, prior = NULL, control = emControl(),
warn = NULL, ...)
Arguments
data |
A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables. |
modelName |
A character string indicating the model. The help file for
|
parameters |
A names list giving the parameters of the model. The components are as follows:
|
prior |
Specification of a conjugate prior on the means and variances. The default assumes no prior. |
control |
A list of control parameters for EM. The defaults are set by the call
|
warn |
A logical value indicating whether or not a warning should be issued
when computations fail. The default is |
... |
Catches unused arguments in indirect or list calls via |
Value
A list including the following components:
modelName |
A character string identifying the model (same as the input argument). |
n |
The number of observations in the data. |
d |
The dimension of the data. |
G |
The number of mixture components. |
z |
A matrix whose |
parameters |
|
loglik |
The log likelihood for the data in the mixture model. |
control |
The list of control parameters for EM used. |
prior |
The specification of a conjugate prior on the means and variances used,
|
Attributes: |
|
See Also
emE
, ...,
emVVV
,
estep
,
me
,
mstep
,
mclust.options
,
do.call
Examples
msEst <- mstep(modelName = "EEE", data = iris[,-5],
z = unmap(iris[,5]))
names(msEst)
em(modelName = msEst$modelName, data = iris[,-5],
parameters = msEst$parameters)
do.call("em", c(list(data = iris[,-5]), msEst)) ## alternative call