clustCombiOptim {mclust} | R Documentation |
Optimal number of clusters obtained by combining mixture components
Description
Return the optimal number of clusters by combining mixture components based on the entropy method discussed in the reference given below.
Usage
clustCombiOptim(object, reg = 2, plot = FALSE, ...)
Arguments
object |
An object of class |
reg |
The number of parts of the piecewise linear regression for the entropy plots. Choose 2 for a two-segment piecewise linear regression model (i.e. 1 change-point), and 3 for a three-segment piecewise linear regression model (i.e. 3 change-points). |
plot |
Logical, if |
... |
Further arguments passed to or from other methods. |
Value
The function returns a list with the following components:
numClusters.combi |
The estimated number of clusters. |
z.combi |
A matrix whose [i,k]th entry is the probability that observation i in the data belongs to the kth cluster. |
cluster.combi |
The clustering labels. |
Author(s)
J.-P. Baudry, A. E. Raftery, L. Scrucca
References
J.-P. Baudry, A. E. Raftery, G. Celeux, K. Lo and R. Gottardo (2010). Combining mixture components for clustering. Journal of Computational and Graphical Statistics, 19(2):332-353.
See Also
combiPlot
, entPlot
, clustCombi
Examples
data(Baudry_etal_2010_JCGS_examples)
output <- clustCombi(data = ex4.1)
combiOptim <- clustCombiOptim(output)
str(combiOptim)
# plot optimal clustering with alpha color transparency proportional to uncertainty
zmax <- apply(combiOptim$z.combi, 1, max)
col <- mclust.options("classPlotColors")[combiOptim$cluster.combi]
vadjustcolor <- Vectorize(adjustcolor)
alphacol = (zmax - 1/combiOptim$numClusters.combi)/(1-1/combiOptim$numClusters.combi)
col <- vadjustcolor(col, alpha.f = alphacol)
plot(ex4.1, col = col, pch = mclust.options("classPlotSymbols")[combiOptim$cluster.combi])