mcgf_rs_sim {mcgf} | R Documentation |
Simulate regime-switching Markov chain Gaussian field
Description
Simulate regime-switching Markov chain Gaussian field
Usage
mcgf_rs_sim(
N,
label,
base_ls,
lagrangian_ls,
par_base_ls,
par_lagr_ls,
lambda_ls,
dists_ls,
sd_ls,
lag_ls,
scale_time = 1,
init = 0,
mu_c_ls = list(0),
mu_p_ls = list(0),
return_all = FALSE
)
Arguments
N |
Sample size. |
label |
Vector of regime labels of the same length as |
base_ls |
List of base model, |
lagrangian_ls |
List of Lagrangian model, "none" or |
par_base_ls |
List of parameters for the base model. |
par_lagr_ls |
List of parameters for the Lagrangian model. |
lambda_ls |
List of weight of the Lagrangian term,
|
dists_ls |
List of distance matrices or arrays. |
sd_ls |
List of standard deviation for each location. |
lag_ls |
List of time lags. |
scale_time |
Scale of time unit, default is 1. Elements in |
init |
Initial samples, default is 0. |
mu_c_ls , mu_p_ls |
List of means of current and past. |
return_all |
Logical; if TRUE the joint covariance matrix, arrays of distances and time lag are returned. |
Value
Simulated regime-switching Markov chain Gaussian field with
user-specified covariance structures. The simulation is done by kriging.
The output data is in space-wide format. Each element in dists_ls
must
contain h
for symmetric models, and h1
and h2
for general stationary
models. init
can be a scalar or a vector of appropriate size.
List elements in sd_ls
, mu_c_ls
, and mu_p_ls
must be vectors of
appropriate sizes.
See Also
Other simulations of Markov chain Gaussian fields:
mcgf_sim()
Examples
par_s <- list(nugget = 0.5, c = 0.01, gamma = 0.5)
par_t <- list(a = 1, alpha = 0.5)
par_base <- list(par_s = par_s, par_t = par_t)
par_lagr <- list(v1 = 5, v2 = 10)
h1 <- matrix(c(0, 5, -5, 0), nrow = 2)
h2 <- matrix(c(0, 8, -8, 0), nrow = 2)
h <- sqrt(h1^2 + h2^2)
dists <- list(h = h, h1 = h1, h2 = h2)
set.seed(123)
label <- sample(1:2, 1000, replace = TRUE)
X <- mcgf_rs_sim(
N = 1000,
label = label,
base_ls = list("sep"),
lagrangian_ls = list("none", "lagr_tri"),
lambda_ls = list(0, 0.5),
par_base_ls = list(par_base),
par_lagr_ls = list(NULL, par_lagr),
dists_ls = list(dists, dists)
)
# plot.ts(X[, -1])