cor_stat {mcgf} | R Documentation |
Calculate general stationary correlation.
Description
Calculate general stationary correlation.
Usage
cor_stat(
base = c("sep", "fs"),
lagrangian = c("none", "lagr_tri", "lagr_askey"),
par_base,
par_lagr,
lambda,
h,
h1,
h2,
u,
base_fixed = FALSE
)
Arguments
base |
Base model, |
lagrangian |
Lagrangian model, |
par_base |
Parameters for the base model (symmetric), used only when
|
par_lagr |
Parameters for the Lagrangian model. Used only when
|
lambda |
Weight of the Lagrangian term, |
h |
Euclidean distance matrix or array, used only when
|
h1 |
Horizontal distance matrix or array, same dimension as |
h2 |
Vertical distance matrix or array, same dimension as |
u |
Time lag, same dimension as |
base_fixed |
Logical; if TRUE, |
Details
The general station model, a convex combination of a base model and a Lagrangian model, has the form
C(\mathbf{h}, u)=(1-\lambda)C_{\text{Base}}(\mathbf{h}, u)+
\lambda C_{\text{Lagr}}(\mathbf{h}, u),
where \lambda
is the weight of the Lagrangian term.
If base_fixed = TRUE
, the correlation is of the form
C(\mathbf{h}, u)=(1-\lambda)C_{\text{Base}}+
\lambda C_{\text{Lagr}}(\mathbf{h}, u),
where base
is a correlation matrix/array and par_base
and h
are not
used.
When lagrangian = "none"
, lambda
must be 0.
Value
Correlations for the general stationary model. Same dimension of
base
if base_fixed = FALSE
.
See Also
Other correlation functions:
cor_cauchy()
,
cor_exp()
,
cor_fs()
,
cor_lagr_askey()
,
cor_lagr_exp()
,
cor_lagr_tri()
,
cor_sep()
,
cor_stat_rs()
Examples
par_s <- list(nugget = 0.5, c = 0.01, gamma = 0.5)
par_t <- list(a = 1, alpha = 0.5)
par_base <- list(par_s = par_s, par_t = par_t)
par_lagr <- list(v1 = 5, v2 = 10)
h1 <- matrix(c(0, 5, -5, 0), nrow = 2)
h2 <- matrix(c(0, 8, -8, 0), nrow = 2)
h <- sqrt(h1^2 + h2^2)
u <- matrix(0.1, nrow = 2, ncol = 2)
cor_stat(
base = "sep", lagrangian = "lagr_tri", par_base = par_base,
par_lagr = par_lagr, lambda = 0.8, h = h, h1 = h1, h2 = h2, u = u
)
h1 <- array(c(0, 5, -5, 0), dim = c(2, 2, 3))
h2 <- array(c(0, 8, -8, 0), dim = c(2, 2, 3))
h <- sqrt(h1^2 + h2^2)
u <- array(rep(c(0.1, 0.2, 0.3), each = 4), dim = c(2, 2, 3))
fit_base <- cor_fs(
nugget = 0.5, c = 0.01, gamma = 0.5, a = 1, alpha = 0.5,
beta = 0.0, h = h, u = u
)
par_lagr <- list(v1 = 5, v2 = 10)
cor_stat(
base = fit_base, lagrangian = "lagr_askey", par_lagr = par_lagr,
h1 = h1, h2 = h2, u = u, lambda = 0.8, base_fixed = TRUE
)