cor_sep {mcgf} | R Documentation |
Calculate correlation for separable model
Description
Calculate correlation for separable model
Usage
cor_sep(
spatial = c("exp", "cauchy"),
temporal = c("exp", "cauchy"),
par_s,
par_t,
h,
u
)
Arguments
spatial |
Pure spatial model, |
temporal |
Pure temporal model, |
par_s |
Parameters for the pure spatial model. Nugget effect supported. |
par_t |
Parameters for the pure temporal model. |
h |
Euclidean distance matrix or array. |
u |
Time lag, same dimension as |
Details
The separable model is the product of a pure temporal model, C_T(u)
,
and a pure spatial model, C_S(\mathbf{h})
. It is of the form
C(\mathbf{h}, u)=C_{T}(u)
\left[(1-\text{nugget})C_{S}(\mathbf{h})+\text{nugget}
\delta_{\mathbf{h}=0}\right],
where \delta_{x=0}
is 1 when x=0
and 0 otherwise. Here
\mathbf{h}\in\mathbb{R}^2
and u\in\mathbb{R}
. Now only
exponential and Cauchy correlation models are available.
Value
Correlations of the same dimension as h
and u
.
References
Gneiting, T. (2002). Nonseparable, Stationary Covariance Functions for Space–Time Data, Journal of the American Statistical Association, 97:458, 590-600.
See Also
Other correlation functions:
cor_cauchy()
,
cor_exp()
,
cor_fs()
,
cor_lagr_askey()
,
cor_lagr_exp()
,
cor_lagr_tri()
,
cor_stat()
,
cor_stat_rs()
Examples
h <- matrix(c(0, 5, 5, 0), nrow = 2)
par_s <- list(nugget = 0.5, c = 0.01, gamma = 0.5)
u <- matrix(0, nrow = 2, ncol = 2)
par_t <- list(a = 1, alpha = 0.5)
cor_sep(
spatial = "exp", temporal = "cauchy", par_s = par_s, par_t = par_t,
h = h, u = u
)
h <- array(c(0, 5, 5, 0), dim = c(2, 2, 3))
par_s <- list(nugget = 0.5, c = 0.01, gamma = 0.5)
u <- array(rep(0:2, each = 4), dim = c(2, 2, 3))
par_t <- list(a = 1, alpha = 0.5)
cor_sep(
spatial = "exp", temporal = "cauchy", par_s = par_s, par_t = par_t,
h = h, u = u
)