cor_fs {mcgf} | R Documentation |
Calculate correlation for fully symmetric model
Description
Calculate correlation for fully symmetric model
Usage
cor_fs(nugget = 0, c, gamma = 1/2, a, alpha, beta = 0, h, u)
Arguments
nugget |
The nugget effect |
c |
Scale parameter of |
gamma |
Smooth parameter of |
a |
Scale parameter of |
alpha |
Smooth parameter of |
beta |
Interaction parameter, |
h |
Euclidean distance matrix or array. |
u |
Time lag, same dimension as |
Details
The fully symmetric correlation function with interaction parameter
\beta
has the form
C(\mathbf{h}, u)=\dfrac{1}{(a|u|^{2\alpha} + 1)}
\left((1-\text{nugget})\exp\left(\dfrac{-c\|\mathbf{h}\|^{2\gamma}}
{(a|u|^{2\alpha}+1)^{\beta\gamma}}\right)+
\text{nugget}\cdot \delta_{\mathbf{h}=\boldsymbol 0}\right),
where \|\cdot\|
is the Euclidean distance, and \delta_{x=0}
is 1
when x=0
and 0 otherwise. Here \mathbf{h}\in\mathbb{R}^2
and
u\in\mathbb{R}
. By default beta = 0
and it reduces to the separable
model.
Value
Correlations of the same dimension as h
and u
.
References
Gneiting, T. (2002). Nonseparable, Stationary Covariance Functions for Space–Time Data, Journal of the American Statistical Association, 97:458, 590-600.
See Also
Other correlation functions:
cor_cauchy()
,
cor_exp()
,
cor_lagr_askey()
,
cor_lagr_exp()
,
cor_lagr_tri()
,
cor_sep()
,
cor_stat()
,
cor_stat_rs()
Examples
h <- matrix(c(0, 5, 5, 0), nrow = 2)
u <- matrix(0, nrow = 2, ncol = 2)
cor_fs(c = 0.01, gamma = 0.5, a = 1, alpha = 0.5, beta = 0.5, h = h, u = u)
h <- array(c(0, 5, 5, 0), dim = c(2, 2, 3))
u <- array(rep(0:2, each = 4), dim = c(2, 2, 3))
cor_fs(c = 0.01, gamma = 0.5, a = 1, alpha = 0.5, beta = 0.5, h = h, u = u)