cor_cauchy {mcgf} | R Documentation |
Calculate Cauchy correlation
Description
Calculate Cauchy correlation
Usage
cor_cauchy(x, a, alpha, nu = 1, nugget = 0, is.dist = FALSE)
Arguments
x |
A numeric vector, matrix, or array. |
a |
Smooth parameter, |
alpha |
Scale parameter, |
nu |
Power parameter, |
nugget |
The nugget effect |
is.dist |
Logical; if TRUE, |
Details
The Cauchy correlation function with scale parameter a
and
smooth parameter \alpha
has the form
C(x)=(1-\text{nugget})(a|x|^{2\alpha} + 1)^{-\nu}+\text{nugget}\cdot
\delta_{x=0},
where \delta_{x=0}
is 1 when x=0
and 0 otherwise.
Value
Correlations of the same dimension as x
.
References
Gneiting, T., and Schlather, M. (2004). Stochastic Models That Separate Fractal Dimension and the Hurst Effect. SIAM Review, 46(2), 269–282.
See Also
Other correlation functions:
cor_exp()
,
cor_fs()
,
cor_lagr_askey()
,
cor_lagr_exp()
,
cor_lagr_tri()
,
cor_sep()
,
cor_stat()
,
cor_stat_rs()
Examples
x <- matrix(c(0, 5, 5, 0), nrow = 2)
cor_cauchy(x, a = 1, alpha = 0.5)
x <- matrix(c(0, 5, 5, 0), nrow = 2)
cor_cauchy(x, a = 1, alpha = 0.5, nugget = 0.3, is.dist = TRUE)