| cor_cauchy {mcgf} | R Documentation |
Calculate Cauchy correlation
Description
Calculate Cauchy correlation
Usage
cor_cauchy(x, a, alpha, nu = 1, nugget = 0, is.dist = FALSE)
Arguments
x |
A numeric vector, matrix, or array. |
a |
Smooth parameter, |
alpha |
Scale parameter, |
nu |
Power parameter, |
nugget |
The nugget effect |
is.dist |
Logical; if TRUE, |
Details
The Cauchy correlation function with scale parameter a and
smooth parameter \alpha has the form
C(x)=(1-\text{nugget})(a|x|^{2\alpha} + 1)^{-\nu}+\text{nugget}\cdot
\delta_{x=0},
where \delta_{x=0} is 1 when x=0 and 0 otherwise.
Value
Correlations of the same dimension as x.
References
Gneiting, T., and Schlather, M. (2004). Stochastic Models That Separate Fractal Dimension and the Hurst Effect. SIAM Review, 46(2), 269–282.
See Also
Other correlation functions:
cor_exp(),
cor_fs(),
cor_lagr_askey(),
cor_lagr_exp(),
cor_lagr_tri(),
cor_sep(),
cor_stat(),
cor_stat_rs()
Examples
x <- matrix(c(0, 5, 5, 0), nrow = 2)
cor_cauchy(x, a = 1, alpha = 0.5)
x <- matrix(c(0, 5, 5, 0), nrow = 2)
cor_cauchy(x, a = 1, alpha = 0.5, nugget = 0.3, is.dist = TRUE)