create.MCCCAdata {mccca} | R Documentation |
this function creates a list (class: mcccadata) to be applied to MCCCA.
Description
Creates a list (named mcccadata.list
) applied to MCCCA.
Usage
create.MCCCAdata(dat,ext.mat=ext.mat,clstr0.vec=NULL)
Arguments
dat |
An (NxJ) matrix of categorical data (N:the number of observations, J:the number of variables). If |
ext.mat |
An (NxH) external variable matrix (H:the number of external variable). |
clstr0.vec |
An integer vector of length N giving each observation's true cluster. |
Value
Returns a list with the following elements.
data.mat |
data matrix same as |
data.list |
A list of C (NxJ) categorical data matrices for each class (C:the number of classes). |
clstr0.list |
A list of C vectors where each vector indicates the true cluster (given in |
N.vec |
A vector of length C giving the number of observations in each class. |
Ktrue.vec |
A vector of length C giving the true number of clusters in each class (NULL if |
q.vec |
A vector of length J giving the number of categories in each of J categorical variables. |
class.n.vec |
An integer (from 1:C) vector of length N giving the class index of each observation. |
classname.n.vec |
A characteristic vector of length N giving the class label each observation belongs to. |
classlabel |
A characteristic vector of length C giving the classlabel for each class. |
classlab.mat |
(Cx(H+1)) table, showing which combinations of categories of external variables each class index and class name corresponds to. The first H columns indicate the categories for each of the H external variables, and the last H+1th column indicates the corresponding class label (same as |
oriindex.list |
A list of length C, where each list element corresponds to a row (observation) in data.list, indicating which row of observations (in |
References
Takagishi & Michel van de Velden (2022): Visualizing Class Specific Heterogeneous Tendencies in Categorical Data, Journal of Computational and Graphical Statistics, DOI: 10.1080/10618600.2022.2035737
Examples
#setting
N <- 100 ; J <- 5 ; Ktrue <- 2 ; q.vec <- rep(5,J) ; noise.prop <- 0.2
extcate.vec=c(2,3)#the number of categories for each external variable
#generate categorical variable data
catedata.list <- generate.onedata(N=N,J=J,Ktrue=Ktrue,q.vec=q.vec,noise.prop = noise.prop)
data.cate=catedata.list$data.mat
clstr0.vec=catedata.list$clstr0.vec
#generate external variable data
data.ext=generate.ext(N,extcate.vec=extcate.vec)
#create mccca.list to be applied to MCCCA function
mccca.data=create.MCCCAdata(data.cate,ext.mat=data.ext,clstr0.vec =clstr0.vec)
#check which class each observation belongs to. (given by class name)
mccca.data$classname.n.vec
#A table showing that which combinations of categories of external variables
# each class index and class name corresponds to.
mccca.data$classlab.mat