SubpopAuditorFitter {mcboost} | R Documentation |
Static AuditorFitter based on Subpopulations
Description
Used to assess multi-calibration based on a list of
binary valued columns: subpops
passed during initialization.
Value
list
with items
-
corr
: pseudo-correlation between residuals and learner prediction. -
l
: the trained learner.
Super class
mcboost::AuditorFitter
-> SubpopAuditorFitter
Public fields
subpops
list
List of subpopulation indicators. Initialize a SubpopAuditorFitter
Methods
Public methods
Inherited methods
Method new()
Initializes a SubpopAuditorFitter
that
assesses multi-calibration within each group defined
by the subpops'. Names in
subpops' must correspond to
columns in the data.
Usage
SubpopAuditorFitter$new(subpops)
Arguments
subpops
list
Specifies a collection of characteristic attributes and the values they take to define subpopulations e.g. list(age = c('20-29','30-39','40+'), nJobs = c(0,1,2,'3+'), ,..).
Method fit()
Fit the learner and compute correlation
Usage
SubpopAuditorFitter$fit(data, resid, mask)
Arguments
data
data.table
Features.resid
numeric
Residuals (of same length as data).mask
integer
Mask applied to the data. Only used forSubgroupAuditorFitter
.
Method clone()
The objects of this class are cloneable with this method.
Usage
SubpopAuditorFitter$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
See Also
Other AuditorFitter:
CVLearnerAuditorFitter
,
LearnerAuditorFitter
,
SubgroupAuditorFitter
Examples
library("data.table")
data = data.table(
"AGE_NA" = c(0, 0, 0, 0, 0),
"AGE_0_10" = c(1, 1, 0, 0, 0),
"AGE_11_20" = c(0, 0, 1, 0, 0),
"AGE_21_31" = c(0, 0, 0, 1, 1),
"X1" = runif(5),
"X2" = runif(5)
)
label = c(1,0,0,1,1)
pops = list("AGE_NA", "AGE_0_10", "AGE_11_20", "AGE_21_31", function(x) {x[["X1" > 0.5]]})
sf = SubpopAuditorFitter$new(subpops = pops)
sf$fit(data, label - 0.5)