| SubpopAuditorFitter {mcboost} | R Documentation |
Static AuditorFitter based on Subpopulations
Description
Used to assess multi-calibration based on a list of
binary valued columns: subpops passed during initialization.
Value
list with items
-
corr: pseudo-correlation between residuals and learner prediction. -
l: the trained learner.
Super class
mcboost::AuditorFitter -> SubpopAuditorFitter
Public fields
subpopslist
List of subpopulation indicators. Initialize a SubpopAuditorFitter
Methods
Public methods
Inherited methods
Method new()
Initializes a SubpopAuditorFitter that
assesses multi-calibration within each group defined
by the subpops'. Names in subpops' must correspond to
columns in the data.
Usage
SubpopAuditorFitter$new(subpops)
Arguments
subpopslist
Specifies a collection of characteristic attributes and the values they take to define subpopulations e.g. list(age = c('20-29','30-39','40+'), nJobs = c(0,1,2,'3+'), ,..).
Method fit()
Fit the learner and compute correlation
Usage
SubpopAuditorFitter$fit(data, resid, mask)
Arguments
datadata.table
Features.residnumeric
Residuals (of same length as data).maskinteger
Mask applied to the data. Only used forSubgroupAuditorFitter.
Method clone()
The objects of this class are cloneable with this method.
Usage
SubpopAuditorFitter$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.
See Also
Other AuditorFitter:
CVLearnerAuditorFitter,
LearnerAuditorFitter,
SubgroupAuditorFitter
Examples
library("data.table")
data = data.table(
"AGE_NA" = c(0, 0, 0, 0, 0),
"AGE_0_10" = c(1, 1, 0, 0, 0),
"AGE_11_20" = c(0, 0, 1, 0, 0),
"AGE_21_31" = c(0, 0, 0, 1, 1),
"X1" = runif(5),
"X2" = runif(5)
)
label = c(1,0,0,1,1)
pops = list("AGE_NA", "AGE_0_10", "AGE_11_20", "AGE_21_31", function(x) {x[["X1" > 0.5]]})
sf = SubpopAuditorFitter$new(subpops = pops)
sf$fit(data, label - 0.5)