dmcd {mcauchyd} | R Documentation |
Density of a Multivariate Cauchy Distribution
Description
Density of the multivariate (p
variables) Cauchy distribution (MCD)
with location parameter mu
and scatter matrix Sigma
.
Usage
dmcd(x, mu, Sigma, tol = 1e-6)
Arguments
x |
length |
mu |
length |
Sigma |
symmetric, positive-definite square matrix of order |
tol |
tolerance (relative to largest eigenvalue) for numerical lack of positive-definiteness in Sigma. |
Details
The density function of a multivariate Cauchy distribution is given by:
\displaystyle{ f(\mathbf{x}|\boldsymbol{\mu}, \Sigma) = \frac{\Gamma\left(\frac{1+p}{2}\right)}{\pi^{p/2} \Gamma\left(\frac{1}{2}\right) |\Sigma|^\frac{1}{2} \left[ 1 + (\mathbf{x}-\boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x}-\boldsymbol{\mu}) \right]^\frac{1+p}{2}} }
Value
The value of the density.
Author(s)
Pierre Santagostini, Nizar Bouhlel
See Also
rmcd
: random generation from a MCD.
plotmcd
, contourmcd
: plot of a bivariate Cauchy density.
Examples
mu <- c(0, 1, 4)
sigma <- matrix(c(1, 0.6, 0.2, 0.6, 1, 0.3, 0.2, 0.3, 1), nrow = 3)
dmcd(c(0, 1, 4), mu, sigma)
dmcd(c(1, 2, 3), mu, sigma)