bootstrapNull {mbmixture} | R Documentation |
Bootstrap to assess significance
Description
Perform a parametric bootstrap to assess whether there is significant evidence that a sample is a mixture.
Usage
bootstrapNull(
tab,
n_rep = 1000,
interval = c(0, 1),
tol = 0.000001,
check_boundary = TRUE,
cores = 1,
return_raw = TRUE
)
Arguments
tab |
Dataset of read counts as 3d array of size 3x3x2, genotype in first sample x genotype in second sample x allele in read. |
n_rep |
Number of bootstrap replicates |
interval |
Interval to which each parameter should be constrained |
tol |
Tolerance for convergence |
check_boundary |
If TRUE, explicitly check the boundaries of |
cores |
Number of CPU cores to use, for parallel calculations.
(If |
return_raw |
If TRUE, return the raw results. If FALSE, just return the p-value.
Unlink |
Value
If return_raw=FALSE
, a single numeric value (the p-value).If
return_raw=TRUE
, a vector of length n_rep
with the LRT statistics from each
bootstrap replicate.
See Also
Examples
data(mbmixdata)
# just 100 bootstrap replicates, as an illustration
bootstrapNull(mbmixdata, n_rep=100)