gbeta {mbbefd} | R Documentation |
The generalized Beta of the first kind Distribution
Description
Density, distribution function, quantile function and random
generation for the GB1 distribution with parameters shape0
,
shape1
and shape2
.
Usage
dgbeta(x, shape0, shape1, shape2, log = FALSE)
pgbeta(q, shape0, shape1, shape2, lower.tail = TRUE, log.p = FALSE)
qgbeta(p, shape0, shape1, shape2, lower.tail = TRUE, log.p = FALSE)
rgbeta(n, shape0, shape1, shape2)
ecgbeta(x, shape0, shape1, shape2)
mgbeta(order, shape0, shape1, shape2)
Arguments
x , q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. If |
shape0 , shape1 , shape2 |
positive parameters of the GB1 distribution. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
order |
order of the raw moment. |
Details
The GB1 distribution with parameters shape0
= g
,
shape1
= a
and shape2
= b
has density
f(x)=\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}{x}^{a/g-1} {(1-x^{1/g})}^{b-1}/g%
for a,b,g > 0
and 0 \le x \le 1
where the boundary values at x=0
or x=1
are defined as
by continuity (as limits).
Value
dgbeta
gives the density, pgbeta
the distribution
function, qgbeta
the quantile function, and rgbeta
generates random deviates.
References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language, Wadsworth & Brooks/Cole, doi:10.1201/9781351074988.
Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. New York: Dover. Chapter 6: Gamma and Related Functions.
Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, Volume 2, especially Chapter 25. Wiley, New York, doi:10.1080/00224065.1996.11979675.
See Also
Distributions for other standard distributions.
Examples
#density
curve(dgbeta(x, 3, 2, 3))
#cdf
curve(pgbeta(x, 3, 2, 3))