znorm {matrixprofiler} | R Documentation |
Math Functions
Description
znorm()
: Normalizes data for mean Zero and Standard Deviation One
ed_corr()
: Converts euclidean distances into correlation values
corr_ed()
: Converts correlation values into euclidean distances
mode()
: Returns the most common value from a vector of integers
std()
: Population SD, as R always calculate with n-1 (sample), here we fix it.
normalize()
: Normalizes data to be between min and max.
complexity()
: Computes the complexity index of the data
binary_split()
: Creates a vector with the indexes of binary split.
Usage
znorm(data, rcpp = TRUE)
ed_corr(data, w, rcpp = TRUE)
corr_ed(data, w, rcpp = TRUE)
mode(x, rcpp = FALSE)
std(data, na.rm = FALSE, rcpp = TRUE)
normalize(data, min_lim = 0, max_lim = 1, rcpp = FALSE)
complexity(data)
binary_split(n, rcpp = TRUE)
Arguments
data |
a |
rcpp |
A |
w |
the window size |
x |
a |
na.rm |
A logical. If |
min_lim |
A number |
max_lim |
A number |
n |
size of the vector |
Value
znorm()
: Returns the normalized data
ed_corr()
: Returns the converted values from euclidean distance to correlation values.
corr_ed()
: Returns the converted values from euclidean distance to correlation values.
mode()
: Returns the most common value from a vector of integers.
std()
: Returns the corrected standard deviation from sample to population.
normalize()
: Returns the normalized data between min and max.
complexity()
: Returns the complexity index of the data provided (normally a subset).
complexity()
: Returns a vector
with the binary split indexes.
Examples
normalized <- znorm(motifs_discords_small)
fake_data <- c(rep(3, 100), rep(2, 100), rep(1, 100))
correlation <- ed_corr(fake_data, 50)
fake_data <- c(rep(0.5, 100), rep(1, 100), rep(0.1, 100))
euclidean <- corr_ed(fake_data, 50)
fake_data <- c(1, 1, 4, 5, 2, 3, 1, 7, 9, 4, 5, 2, 3)
mode <- mode(fake_data)
fake_data <- c(1, 1.4, 4.3, 5.1, 2, 3.6, 1.24, 2, 9, 4.3, 5, 2.1, 3)
res <- std(fake_data)
fake_data <- c(1, 1.4, 4.3, 5.1, 2, 3.6, 1.24, 1, 9, 4.3, 5, 2.1, 3)
res <- normalize(fake_data)
fake_data <- c(1, 1.4, 4.3, 5.1, 2, 3.6, 1.24, 8, 9, 4.3, 5, 2.1, 3)
res <- complexity(fake_data)
fake_data <- c(10)
res <- binary_split(fake_data)