stirling.matrix {matrixcalc}R Documentation

Stirling Matrix

Description

This function constructs and returns a Stirling matrix which is a lower triangular matrix containing the Stirling numbers of the second kind.

Usage

stirling.matrix(n)

Arguments

n

A positive integer value

Details

The Stirling numbers of the second kind, SijS_i^j, are used in combinatorics to compute the number of ways a set of ii objects can be partitioned into jj non-empty subsets jij \le i. The numbers are also denoted by {ij}\left\{ {\begin{array}{c}i\\j\end{array}} \right\}. Stirling numbers of the second kind can be computed recursively with the equation Sji+1=Sj1i+j  Sji,1in1,  1jiS_j^{i + 1} = S_{j - 1}^i + j\;S_j^i,\quad 1 \le i \le n - 1,\;1 \le j \le i. The initial conditions for the recursion are Sii=1,0inS_i^i = 1,\quad 0 \le i \le n and Sj0=S0j=0,0jnS_j^0 = S_0^j = 0,\quad 0 \le j \le n. The resultant numbers are organized in an order n+1n + 1 matrix [S000000S11000S12S2200S1nS2nSnn]\left\lbrack {\begin{array}{ccccc} {S_0^0}&0&0& \cdots &0\\ 0&{S_1^1}&0& \cdots &0\\ 0&{S_1^2}&{S_2^2}& \cdots &0\\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0&{S_1^n}&{S_2^n}& \cdots &{S_n^n} \end{array}} \right\rbrack.

Value

An order n+1n + 1 lower triangular matrix.

Note

If the argument n is not a positive integer, the function presents an error message and stops.

Author(s)

Frederick Novomestky fnovomes@poly.edu

References

Aceto, L. and D. Trigiante (2001). Matrices of Pascal and Other Greats, American Mathematical Monthly, March 2001, 108(3), 232-245.

Examples

S <- stirling.matrix( 10 )
print( S )

[Package matrixcalc version 1.0-6 Index]