is.positive.definite {matrixcalc} | R Documentation |
Test matrix for positive definiteness
Description
This function returns TRUE if the argument, a square symmetric real matrix x, is positive definite.
Usage
is.positive.definite(x, tol=1e-8)
Arguments
x |
a matrix |
tol |
a numeric tolerance level |
Details
For a positive definite matrix, the eigenvalues should be positive. The R function eigen
is used to compute the eigenvalues. If any of the eigenvalues in absolute value is less than the
given tolerance, that eigenvalue is replaced with zero. If any of the eigenvalues is less than or equal to zero,
then the matrix is not positive definite. Otherwise, the matrix is declared to be positive definite.
Value
TRUE or FALSE.
Author(s)
Frederick Novomestky fnovomes@poly.edu
References
Bellman, R. (1987). Matrix Analysis, Second edition, Classics in Applied Mathematics, Society for Industrial and Applied Mathematics.
See Also
is.positive.semi.definite
,
is.negative.definite
,
is.negative.semi.definite
,
is.indefinite
Examples
###
### identity matrix is always positive definite
I <- diag( 1, 3 )
is.positive.definite( I )
###
### positive definite matrix
### eigenvalues are 3.4142136 2.0000000 0.585786
###
A <- matrix( c( 2, -1, 0, -1, 2, -1, 0, -1, 2 ), nrow=3, byrow=TRUE )
is.positive.definite( A )
###
### positive semi-defnite matrix
### eigenvalues are 4.732051 1.267949 8.881784e-16
###
B <- matrix( c( 2, -1, 2, -1, 2, -1, 2, -1, 2 ), nrow=3, byrow=TRUE )
is.positive.definite( B )
###
### negative definite matrix
### eigenvalues are -0.5857864 -2.0000000 -3.4142136
###
C <- matrix( c( -2, 1, 0, 1, -2, 1, 0, 1, -2 ), nrow=3, byrow=TRUE )
is.positive.definite( C )
###
### negative semi-definite matrix
### eigenvalues are 1.894210e-16 -1.267949 -4.732051
###
D <- matrix( c( -2, 1, -2, 1, -2, 1, -2, 1, -2 ), nrow=3, byrow=TRUE )
is.positive.definite( D )
###
### indefinite matrix
### eigenvalues are 3.828427 1.000000 -1.828427
###
E <- matrix( c( 1, 2, 0, 2, 1, 2, 0, 2, 1 ), nrow=3, byrow=TRUE )
is.positive.definite( E )