objective.fun {matchFeat} | R Documentation |
Calculate Cost of Multidimensional Assignment
Description
Calculates the objective value in the multidimensional assignment problem with decomposable costs (MDADC). The dissimilarity function used in this problem is the squared Euclidean distance.
Usage
objective.fun(x, sigma = NULL, unit = NULL, w = NULL)
Arguments
x |
data: matrix of dimensions |
sigma |
permutations: matrix of dimensions |
unit |
integer (=number of units) or vector mapping rows of |
w |
weights for loss function: single positive number,
|
Details
Given n
datasets having each m
vectors of same size,
say {x_{11},...,x_{1m}},...,x_{n1},...,x_{nm}
, and permutations
\sigma_1,...,\sigma_n
of {1,...,m}
, the function calculates
1/(n(n-1)) sum_{i,j} sum_{k} || x_{i,sigma_i(k)- x_{j,\sigma_j(k) \|^2}}
where i
and n
run from 1 to n
and k
runs from 1 to m
. This is the objective value (1) of Degras (2021), up to the factor 1/(n(n-1))
.
Value
Objective value
References
Degras (2022) "Scalable feature matching across large data collections." doi:10.1080/10618600.2022.2074429
See Also
Examples
data(optdigits)
m <- 10
n <- 100
sigma <- matrix(1:m,m,n) # identity permutations
objective.fun(optdigits$x, sigma, optdigits$unit)