match.rec {matchFeat} | R Documentation |
Recursive Initialization Method
Description
RECUR1 algorithm of Bandelt et al (2004) to find starting point in the multidimensional assignment problem with decomposable costs (MDADC)
Usage
match.rec(x, unit = NULL, w = NULL, control = list())
Arguments
x |
data: matrix of dimensions |
unit |
integer (=number of units) or vector mapping rows of |
w |
weights for loss function: single positive number,
|
control |
tuning parameters |
Value
A list of class matchFeat
with components
sigma
best set of permutations for feature vectors (
(m,n)
matrix)cluster
associated clusters (= inverse permutations)
cost
minimum objective value
mu
sample mean for each class/label (
(p,m)
matrix)V
sample covariance for each class/label (
(p,m)
matrixcall
function call
References
Degras (2022) "Scalable feature matching across large data collections."
doi:10.1080/10618600.2022.2074429
Bandelt, Maas, and Spieksma (2004), "Local search heuristics for multi-index assignment problems with decomposable costs." doi:10.1057/palgrave.jors.2601723
See Also
match.2x
, match.bca
,
match.gaussmix
, match.template
,
match.kmeans
Examples
data(optdigits)
m <- length(unique(optdigits$label)) # number of classes
n <- nrow(optdigits$x) / m # number of units
## Use function with data in matrix form
fit1 <- match.rec(optdigits$x, unit=n)
## Use function with data in array form
p <- ncol(optdigits$x)
x <- t(optdigits$x)
dim(x) <- c(p,m,n)
fit2 <- match.rec(x)