mastPriors {mastif} | R Documentation |
Obtain prior parameter values for mastif from file
Description
Prior parameter values may be saved in a file by species or by genus. mastPriors
looks for a species-level prior first. If not found, it can substutitute a genus-level prior.
Usage
mastPriors(file, specNames, code, genus = 'NULL')
Arguments
file |
|
specNames |
|
code |
|
genus |
|
Details
The file
includes rows with genera, given in column "genus", or "species". Species rows also have an entry for genus, with the species code given in the column named code
. Additional columns are names of prior parameters, including:
priorDist
: mean parameter for dispersal kernel (m), related to kernel parameter u
as d <- pi*sqrt(u)/2
. The estimated values for these parameters are found in output$parameters$upars
and output$parameters$dpars
, where output
is an object fitted by mastif
.
minDist
: the lower bound for the mean parameter d
of the dispersal kernel (m).
maxDist
: the upper bound for the mean parameter d
of the dispersal kernel (m).
priorVDist
: variance on the mean parameter for dispersal kernel (m^2). For large values, the prior distribution of d
(and by variable change, u
) becomes dunif(d, minDist, maxDist)
.
minDiam
: below this diameter trees of unknown status are assumed immature (cm).
maxDiam
: above this diameter trees of unknown status are assumed mature (cm).
maxFec
: maximum seeds per tree per year
More detailed vignettes can be obtained with: browseVignettes('mastif')
Value
A data.frame
with a row for each specNames
and columns for prior parameter values. Where file
contains species-level parameter values, they will be used. If a separate row in file
holds genus-level parameters, with the entry for code == 'NA'
, then genus-level parameters will be substituted. In other words, these genus rows are default values.
Author(s)
James S Clark, jimclark@duke.edu
References
Clark, J.S., C. Nunes, and B. Tomasek. 2019. Foodwebs based on unreliable foundations: spatio-temporal masting merged with consumer movement, storage, and diet. Ecological Monographs, e01381.
See Also
mastFillCensus
to fill tree census
mastif
for analysis
A more detailed vignette is can be obtained with:
browseVignettes('mastif')
website 'http://sites.nicholas.duke.edu/clarklab/code/'.
Examples
d <- "https://github.com/jimclarkatduke/mast/blob/master/pinusExample.rdata?raw=True"
repmis::source_data(d)
# prior parameter values
pfile <- tempfile(fileext = '.txt')
d <- "https://github.com/jimclarkatduke/mast/blob/master/priorParameters.txt?raw=True"
download.file(d, destfile = pfile)
specNames <- c("pinuEchi","pinuRigi","pinuStro","pinuTaed","pinuVirg")
seedNames <- c(specNames, "pinuUNKN")
priorTable <- mastPriors(file = pfile, specNames,
code = 'code4', genus = 'pinus')
inputs <- list( specNames = specNames, seedNames = seedNames,
treeData = treeData, seedData = seedData,
xytree = xytree, xytrap = xytrap,
priorTable = priorTable, seedTraits = seedTraits)
formulaRep <- as.formula( ~ diam )
formulaFec <- as.formula( ~ diam )
output <- mastif(inputs = inputs, formulaFec, formulaRep,
ng = 1000, burnin = 400)