loglogis_rp {marp} | R Documentation |
A function to fit Log-Logistics renewal model
Description
A function to fit Log-Logistics renewal model
Usage
loglogis_rp(data, t, m, y)
Arguments
data |
input inter-event times |
t |
user-specified time intervals (used to compute hazard rate) |
m |
the number of iterations in nlm |
y |
user-specified time point (used to compute time-to-event probability) |
Value
returns list of estimates after fitting Log-Logistics renewal model
- par1
Estimated shape parameter of the Log-Logistics model
- par2
Estimated scale parameter of the Log-Logistics model
- logL
Negative log-likelihood
- AIC
Akaike information criterion (AIC)
- BIC
Bayesian information criterion (BIC)
- mu_hat
Estimated mean
- pr_hat
Estimated (logit) probabilities
- haz_hat
Estimated (log) hazard rates
Examples
set.seed(42)
data <- rgamma(100,3,0.01)
# set some parameters
m = 10 # number of iterations for MLE optimization
t = seq(100, 200, by=10) # time intervals
y = 304 # cut-off year for estimating probablity
# fit Log-Logistic renewal model
result <- marp::loglogis_rp(data, t, m, y)
# print result
cat("par1 = ", result$par1, "\n")
cat("par2 = ", result$par2, "\n")
cat("logL = ", result$logL, "\n")
cat("AIC = ", result$AIC, "\n")
cat("BIC = ", result$BIC, "\n")
cat("mu_hat = ", result$mu_hat, "\n")
cat("pr_hat = ", result$pr_hat, "\n")
[Package marp version 0.1.0 Index]