predict.topics {maptpx} | R Documentation |
topic predict
Description
Predict function for Topic Models
Usage
## S3 method for class 'topics'
predict( object, newcounts, loglhd=FALSE, ... )
Arguments
object |
An output object from the |
newcounts |
An |
loglhd |
Whether or not to calculate and return |
... |
Additional arguments to the undocumented internal |
Details
Under the default mixed-membership topic model, this function uses sequential quadratic programming to fit topic weights \Omega
for new documents.
Estimates for each new \omega_i
are, conditional on object$theta
,
MAP in the (K-1)-dimensional logit transformed parameter space.
Value
The output is an nrow(newcounts)
by object$K
matrix of document topic weights, or a list with including these weights as W
and the log likelihood as L
.
Author(s)
Matt Taddy mataddy@gmail.com
References
Taddy (2012), On Estimation and Selection for Topic Models. http://arxiv.org/abs/1109.4518
See Also
topics, plot.topics, summary.topics, congress109
Examples
## Simulate some data
omega <- t(rdir(500, rep(1/10,10)))
theta <- rdir(10, rep(1/1000,1000))
Q <- omega%*%t(theta)
counts <- matrix(ncol=1000, nrow=500)
totals <- rpois(500, 200)
for(i in 1:500){ counts[i,] <- rmultinom(1, size=totals[i], prob=Q[i,]) }
## predict omega given theta
W <- predict.topics( theta, counts )
plot(W, omega, pch=21, bg=8)