calc_genoprob_single_parent {mappoly} | R Documentation |
Compute conditional probabilities of the genotype (one informative parent)
Description
Conditional genotype probabilities are calculated for each marker position and each individual given a map
Usage
calc_genoprob_single_parent(
input.map,
step = 0,
info.parent = 1,
uninfo.parent = 2,
global.err = 0,
phase.config = "best",
verbose = TRUE
)
Arguments
input.map |
An object of class |
step |
Maximum distance (in cM) between positions at which the genotype probabilities are calculated, though for step = 0, probabilities are calculated only at the marker locations. |
info.parent |
index for informative parent |
uninfo.parent |
index for uninformative parent |
global.err |
the assumed global error rate (default = 0.0) |
phase.config |
which phase configuration should be used. "best" (default) will choose the phase configuration associated with the maximum likelihood |
verbose |
if |
Value
An object of class 'mappoly.genoprob' which has two elements: a tridimensional array containing the probabilities of all possible genotypes for each individual in each marker position; and the marker sequence with it's recombination frequencies
Author(s)
Marcelo Mollinari, mmollin@ncsu.edu
References
Mollinari, M., and Garcia, A. A. F. (2019) Linkage analysis and haplotype phasing in experimental autopolyploid populations with high ploidy level using hidden Markov models, _G3: Genes, Genomes, Genetics_. doi:10.1534/g3.119.400378
Examples
## tetraploid example
s <- make_seq_mappoly(tetra.solcap, 'seq12', info.parent = "p1")
tpt <- est_pairwise_rf(s)
map <- est_rf_hmm_sequential(input.seq = s,
twopt = tpt,
start.set = 10,
thres.twopt = 10,
thres.hmm = 10,
extend.tail = 4,
info.tail = TRUE,
sub.map.size.diff.limit = 8,
phase.number.limit = 4,
reestimate.single.ph.configuration = TRUE,
tol = 10e-2,
tol.final = 10e-3)
plot(map)
probs <- calc_genoprob_single_parent(input.map = map,
info.parent = 1,
uninfo.parent = 2,
step = 1)
probs
## displaying individual 1, 6 genotypic states
## (rows) across linkage group 1 (columns)
image(t(probs$probs[,,2]))