olofsson {mapaccuracy} | R Documentation |
Thematic map accuracy and area.
Description
Implements the estimators described in Olofsson et al. (2013, 2014) for overall accuracy, producer's accuracy, user's accuracy, and area. Includes precision estimates.
Usage
olofsson(r, m, Nh, margins = TRUE)
Arguments
r |
character vector. Reference class labels. The object will be coerced to factor. |
m |
character vector. Map class labels. The object will be coerced to factor. |
Nh |
numeric vector. Area, number of pixels, or proportion of the classes in the map. It must be named (see details). |
margins |
logical. If |
Details
Argument Nh
must be named to explicitly and clearly identify the class that each area refers to.
The order of Nh
will be used for displaying the results.
In the error matrix returned, the entries corresponding to no observed cases will present
NA
rather than 0
. This is to emphasize the difference between the absence of cases
and the presence of some (few) cases that represent a very small proportion of area (almost
zero) and thus possibly rounded to zero. However, NA
means zero proportion of area.
Value
A list with the estimates and error matrix.
OA |
overall accuracy |
UA |
user's accuracy |
PA |
producer's accuracy |
area |
area proportion |
SEoa |
standard error of OA |
SEua |
standard error of UA |
SEpa |
standard error of PA |
SEa |
standard error of area proportion |
matrix |
confusion error (area proportion). Rows and columns represent map and reference class labels, respectively |
Author(s)
Hugo Costa
References
Olofsson, P.; Foody, G. M.; Stehman, S. V.; Woodcock, C. E. (2013). Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sens. Environ., 129, 122-131.
Olofsson, P.; Foody, G. M.; Herold, M.; Stehman, S. V.; Woodcock, C. E.; Wulder, M. A. (2014). Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ., 148, 42-57.
Examples
## Example 1 in Olofsson et al. (2013)
r<-c(rep("1",102),rep("2",280),rep("3",118))
m<-c(rep("1",97) ,rep("2",3), rep("3",2),rep("2",279),
"3",rep("1",3),rep("2",18),rep("3",97))
Nh<-c(22353, 1122543, 610228)
names(Nh)<-c("1", "2", "3")
a<-olofsson(r, m, Nh)
# compare to paper:
a$area[1] # eq. 9
a$area[1]*sum(Nh) # eq. 10
a$SEa[1]*sum(Nh) # eq. 12
a$area[1]*sum(Nh)-qnorm(0.975)*a$SEa[1]*sum(Nh) # 95% CI lower bound (note typo in the paper)
a$area[1]*sum(Nh)+qnorm(0.975)*a$SEa[1]*sum(Nh) # 95% CI upper bound
a$UA[1] # eq. 14
a$PA[1] # eq. 15
a$OA # eq. 16
a$UA # table 4
qnorm(0.975)*a$SEua # table 4
a$PA # table 4
qnorm(0.975)*a$SEpa # table 4
a$matrix # table 4
## Example 2 in Olofsson et al. (2013)
r<-c(rep("1", 129), rep("2", 403), rep("3", 611))
m<-c(rep("1", 127), "2", "2", rep("1", 66), rep("2", 322), rep("3", 15), rep("1", 54),
rep("2", 17), rep("3", 540))
Nh<-c(0.007, 0.295, 0.698)
names(Nh)<-c("1", "2", "3")
b<-olofsson(r, m, Nh)
# compare to paper (table 6):
b$OA
qnorm(0.975)*b$SEoa
b$UA
qnorm(0.975)*b$SEua
b$PA
qnorm(0.975)*b$SEpa
## Example of table 8 in Olofsson et al. (2014)
r<-c(rep(1,69),rep(2,56),rep(3,175),rep(4,340))
m<-c(rep(1,66), 3, rep(4,2), rep(2,55), 4, rep(1,5), rep(2,8),
rep(3,153),rep(4,9),rep(1,4),rep(2,12),rep(3,11),rep(4,313))
r[r==1] <- m[m==1] <- "Deforestation"
r[r==2] <- m[m==2] <- "Forest gain"
r[r==3] <- m[m==3] <- "Stable forest"
r[r==4] <- m[m==4] <- "Stable non-forest"
Nh<-c("Deforestation"=200000, "Forest gain"=150000,
"Stable forest"=3200000, "Stable non-forest"=6450000) * 30^2 # Landsat pixel area = 30^2
e<-olofsson(r, m, Nh)
# compare to paper, left-hand of p. 54:
e$UA # User's accuracy
qnorm(0.975)*e$SEua # 95% CI width
e$PA # Producer's accuracy
qnorm(0.975)*e$SEpa # 95% CI width
e$OA # Overall accuracy
qnorm(0.975)*e$SEoa # 95% CI width
# compare to paper, right-hand of p. 54:
e$area[1]*sum(Nh)/10000 # deforestation in hectares
qnorm(0.975)*e$SEa[1]*sum(Nh)/10000 # 95% CI width in hectares
e$area[2]*sum(Nh)/10000 # forest gain in hectares
qnorm(0.975)*e$SEa[2]*sum(Nh)/10000 # 95% CI width in hectares
e$area[3]*sum(Nh)/10000 # stable forest in hectares
qnorm(0.975)*e$SEa[3]*sum(Nh)/10000 # 95% CI width in hectares
e$area[4]*sum(Nh)/10000 # stable non-forest in hectares
qnorm(0.975)*e$SEa[4]*sum(Nh)/10000 # 95% CI width in hectares
# change class order
olofsson(r, m, Nh[c(4,2,1,3)])
# m (map) may include classes not found in r (reference)
r<-c(rep("1",102),rep("2",280),rep("3",118))
m<-c(rep("1",97) ,rep("2",3), rep("3",2),rep("2",279),
"3",rep("1",3),rep("2",18),rep("3",95), rep("4",2))
Nh<-c("1"=22353, "2"=1122543, "3"=610228, "4"=10)
olofsson(r, m, Nh)
# r (reference) may include classes not found in m (map)
r<-c(rep("1",102),rep("2",280),rep("3",116),rep("4",2))
m<-c(rep("1",97) ,rep("2",3), rep("3",2),rep("2",279),
"3",rep("1",3),rep("2",18),rep("3",97))
Nh<-c("1"=22353, "2"=1122543, "3"=610228)
olofsson(r, m, Nh)
# can add classes not found neither in r nor m
Nh<-c(Nh, "9"=0)
olofsson(r, m, Nh)