ecdfdist {maotai} | R Documentation |
Distance Measures between Multiple Empirical Cumulative Distribution Functions
Description
We measure distance between two empirical cumulative distribution functions (ECDF). For
simplicity, we only take an input of ecdf
objects from stats package.
Usage
ecdfdist(elist, method = c("KS", "Lp", "Wasserstein"), p = 2, as.dist = FALSE)
Arguments
elist |
a length |
method |
name of the distance/dissimilarity measure. Case insensitive. |
p |
exponent for |
as.dist |
a logical; |
Value
either dist
object of an (N\times N)
symmetric matrix of pairwise distances by as.dist
argument.
See Also
Examples
## toy example : 10 of random and uniform distributions
mylist = list()
for (i in 1:10){
mylist[[i]] = stats::ecdf(stats::rnorm(50, sd=2))
}
for (i in 11:20){
mylist[[i]] = stats::ecdf(stats::runif(50, min=-5))
}
## compute Kolmogorov-Smirnov distance
dm = ecdfdist(mylist, method="KS")
## visualize
mks =" KS distances of 2 Types"
opar = par(no.readonly=TRUE)
par(pty="s")
image(dm[,nrow(dm):1], axes=FALSE, main=mks)
par(opar)
[Package maotai version 0.2.5 Index]