| sam {magic} | R Documentation |
Sparse antimagic squares
Description
Produces an antimagic square of order m using
Gray and MacDougall's method.
Usage
sam(m, u, A=NULL, B=A)
Arguments
m |
Order of the magic square (not “ |
u |
See details section |
A, B |
Start latin squares, with default |
Details
In Gray's terminology, sam(m,n) produces a
SAM(2m,2u+1,0).
The method is not vectorized.
To test for these properties, use functions such as
is.antimagic(), documented under is.magic.Rd.
Author(s)
Robin K. S. Hankin
References
I. D. Gray and J. A. MacDougall 2006. “Sparse anti-magic squares and vertex-magic labelings of bipartite graphs”, Discrete Mathematics, volume 306, pp2878-2892
See Also
Examples
sam(6,2)
jj <- matrix(c(
5, 2, 3, 4, 1,
3, 5, 4, 1, 2,
2, 3, 1, 5, 4,
4, 1, 2, 3, 5,
1, 4, 5, 2, 3),5,5)
is.sam(sam(5,2,B=jj))
[Package magic version 1.6-1 Index]