sam {magic} | R Documentation |
Sparse antimagic squares
Description
Produces an antimagic square of order m
using
Gray and MacDougall's method.
Usage
sam(m, u, A=NULL, B=A)
Arguments
m |
Order of the magic square (not “ |
u |
See details section |
A , B |
Start latin squares, with default |
Details
In Gray's terminology, sam(m,n)
produces a
SAM(2m,2u+1,0)
.
The method is not vectorized.
To test for these properties, use functions such as
is.antimagic()
, documented under is.magic.Rd
.
Author(s)
Robin K. S. Hankin
References
I. D. Gray and J. A. MacDougall 2006. “Sparse anti-magic squares and vertex-magic labelings of bipartite graphs”, Discrete Mathematics, volume 306, pp2878-2892
See Also
Examples
sam(6,2)
jj <- matrix(c(
5, 2, 3, 4, 1,
3, 5, 4, 1, 2,
2, 3, 1, 5, 4,
4, 1, 2, 3, 5,
1, 4, 5, 2, 3),5,5)
is.sam(sam(5,2,B=jj))
[Package magic version 1.6-1 Index]