madsim {madsim} | R Documentation |
Main function of the package "madsim"
Description
function madsim() allows to generate two biological conditions synthetic microarray dataset with known characteristics. These data have similar behavior as those obtained with current microarray platforms. Hence, they can be used for performance evaluation of data meta-analysis methods.
Usage
madsim(mdata = NULL, n = 10000, ratio = 0,
fparams = data.frame(m1=7,m2=7,shape2=4,lb=4,ub=14,pde=0.02,sym=0.5),
dparams = data.frame(lambda1=0.13, lambda2=2, muminde=1, sdde=0.5),
sdn = 0.4, rseed = 50)
Arguments
mdata |
a data frame with numerical values to be used as seed,
its length should be greater than 100. When set to
NULL (default) data generated are fully synthetic:
|
n |
an integer specifying the number of genes in the data generated:
|
ratio |
a flag (0,1) allowing to have log2 intensitie or log2 ratio:
|
fparams |
a data frame containing 7 components defining the data
lower (lb) and upper bound (ub), the beta distribution
shape (shape2) parameter, the percentage of differentially
expressed (pde) number of genes and the partition of the
number of down and up regulated (sym) genes: |
dparams |
a data frame containing 4 components defining how low and
high expressed genes are distributed (lambda1), and
how changes are for DE genes (lambda2, muminde, sdde): |
sdn |
a positive scalar used as standard deviation for the
additive gaussian noise: |
rseed |
an integer used as seed for generating random number
by the computer in use: |
Details
User provides a subset of parameters. A detailed description of these parameters is available in the reference given below. Default parameters settings (in arguments above) can be modified.
Value
Returned is a data frame containing 3 components
xdata |
a dataset with sizes, the number of rows and columns, specified by input parameters n and m1+m2, respectively |
xid |
a vector of indexes with values are from the set (0, -1, 1). These values are used for non differentially expressed, down- and up-regulated genes |
xsd |
a scalar containing the standard deviation of first column of the dataset generated |
Author(s)
Doulaye Dembele
References
Dembele D. (2013), A Flexible Microarray Data Simulation Model. Microarrays, 2013, 2(2):115-130
Examples
# load a sample of real microarray data
data(madsim_test)
# set parameters settings
mdata <- madsim_test$V1;
fparams <- data.frame(m1 = 7, m2 = 7, shape2 = 4, lb = 4, ub = 14,pde=0.02,sym=0.5);
dparams <- data.frame(lambda1 = 0.13, lambda2 = 2, muminde = 1, sdde = 0.5);
sdn <- 0.4; rseed <- 50;
# generate fully synthetic data
mydata1 <- madsim(mdata = NULL, n = 10000, ratio = 0, fparams, dparams, sdn, rseed);
# use true affymetrix data to generate synthetic data
mydata2 <- madsim(mdata = madsim_test, n=10000, ratio=0,fparams,dparams,sdn,rseed);
A1 <- 0.5*(mydata1$xdata[,12] + mydata1$xdata[,1]);
M1 <- mydata1$xdata[,12] - mydata1$xdata[,1];
A2 <- 0.5*(mydata2$xdata[,12] + mydata2$xdata[,1]);
M2 <- mydata2$xdata[,12] - mydata2$xdata[,1];
# draw MA plot using samples 1 and 12
op <- par(mfrow = c())
plot(A1,M1)
plot(A2,M2)
par(op)