as_category |
Validate and coerce any object as a categorical variable. |
as_dataset |
Validate and coerce any object as a dataset |
as_data_dict |
Validate and coerce any object as a data dictionary |
as_data_dict_mlstr |
Validate and coerce any object as an Opal data dictionary format |
as_data_dict_shape |
Validate and coerce any object as a workable data dictionary structure |
as_dossier |
Validate and coerce any object as a dossier (list of dataset(s)) |
as_taxonomy |
Validate and coerce any object as a taxonomy |
as_valueType |
Validate and coerce any object according to a given valueType |
bookdown_open |
Objects exported from other packages |
bookdown_render |
Objects exported from other packages |
bookdown_template |
Objects exported from other packages |
check_dataset_categories |
Assess a data dictionary and associated dataset for category differences |
check_dataset_valueType |
Assess a data dictionary and associated dataset for valueType differences |
check_dataset_variables |
Assess a data dictionary and associated dataset for undeclared variables |
check_data_dict_categories |
Assess a data dictionary for potential issues in categories |
check_data_dict_missing_categories |
Assess categorical variables for non-Boolean values in 'missing' column |
check_data_dict_valueType |
Assess a data dictionary for non-valid valueType values |
check_data_dict_variables |
Assess a data dictionary for potential issues in variables |
check_name_standards |
Assess variable names in a data dictionary for non-standard formats |
col_id |
Return the id column names(s) of a dataset |
dataset_cat_as_labels |
Apply data dictionary category labels to the associated dataset variables |
dataset_evaluate |
Generate an assessment report for a dataset |
dataset_preprocess |
Generate an evaluation of all variable values in a dataset |
dataset_summarize |
Generate an assessment report and summary of a dataset |
dataset_visualize |
Generate a web-based visual report for a dataset |
dataset_zap_data_dict |
Remove labels (attributes) from a data frame, leaving its unlabelled columns |
data_dict_apply |
Apply a data dictionary to a dataset |
data_dict_collapse |
Transform multi-row category column(s) to single rows and join to "Variables" |
data_dict_evaluate |
Generate an assessment report for a data dictionary |
data_dict_expand |
Transform single-row category information to multiple rows as element |
data_dict_extract |
Generate a data dictionary from a dataset |
data_dict_filter |
Subset data dictionary by row values |
data_dict_group_by |
Group listed data dictionaries by specified column names |
data_dict_group_split |
Split grouped data dictionaries into a named list |
data_dict_list_nest |
Bind listed data dictionaries |
data_dict_match_dataset |
Inner join between a dataset and its associated data dictionary |
data_dict_pivot_longer |
Transform column(s) of a data dictionary from wide format to long format |
data_dict_pivot_wider |
Transform column(s) of a data dictionary from long format to wide format |
data_dict_ungroup |
Ungroup data dictionary |
data_extract |
Create an empty dataset from a data dictionary |
dossier_create |
Generate a dossier from a list of one or more datasets |
dossier_evaluate |
Generate an assessment report of a dossier |
dossier_summarize |
Generate an assessment report and summary of a dossier |
drop_category |
Validate and coerce any object as a non-categorical variable. |
is_category |
Test if an object is a valid dataset |
is_dataset |
Test if an object is a valid dataset |
is_data_dict |
Test if an object is a valid data dictionary |
is_data_dict_mlstr |
Test if an object is a valid Maelstrom data dictionary |
is_data_dict_shape |
Test if an object is a workable data dictionary structure |
is_dossier |
Test if an object is a valid dossier (list of dataset(s)) |
is_taxonomy |
Test if an object is a valid taxonomy |
is_valueType |
Test if a character object is one of the valid valueType values |
madshapR_DEMO |
Built-in material allowing the user to test the package with demo data |
madshapR_website |
Call to online documentation |
summary_variables |
Provide descriptive statistics for variables in a dataset |
summary_variables_categorical |
Provide descriptive statistics for variables of categorical in a dataset |
summary_variables_date |
Provide descriptive statistics for variables of type 'date' in a dataset |
summary_variables_datetime |
Provide descriptive statistics for variables of type 'datetime' in a dataset |
summary_variables_numeric |
Provide descriptive statistics for variables of type 'numeric' in a dataset |
summary_variables_text |
Provide descriptive statistics for variables of type 'text' in a dataset |
valueType_adjust |
Attribute the valueType from a data dictionary to a dataset, or vice versa |
valueType_guess |
Guess the first possible valueType of an object (Can be a vector) |
valueType_list |
Built-in data frame of allowed valueType values |
valueType_of |
Return the valueType of an object |
valueType_self_adjust |
Guess and attribute the valueType of a data dictionary or dataset variable |
variable_visualize |
Generate a list of charts, figures and summary tables of a variable |