eigen {madness} | R Documentation |
Spectral Decomposition of a Matrix
Description
Computes eigenvalues and eigenvectors of numeric (double, integer, logical) or
complex madness
matrices.
Usage
## S4 method for signature 'madness'
eigen(x, symmetric, only.values = FALSE, EISPACK = FALSE)
Arguments
x |
|
symmetric |
if |
only.values |
if |
EISPACK |
logical. Defunct and ignored. |
Details
The singular value decomposition of the matrix X
is
X = U D V',
where U
and V
are orthogonal, V'
is V
transposed, and D
is a diagonal matrix with the singular
values on the diagonal.
Value
a list with components
- values
a
madness
object of a vector containing thep
eigenvalues ofx
, sorted in decreasing order, according toMod(value)
in the assymetric case when they might be complex (even for real matrices). For real asymmetric matrices the vector will be complex only if complex conjugate pairs of eigenvalues are detected.- vectors
either a
p \times p
matrix whose columns contain the eigenvectors ofx
orNULL
ifonly.values
isTRUE
. The vectors are normalized to unit length.Recall that the eigenvectors are only defined up to a constant: even when the length is specified they are still only defined up to a scalar of modulus one (the sign for real matrices). If
r <- eigen(A)
, andV <- r$vectors; lam <- r$values
, thenA = V Lmbd V^{-1}
(up to numerical fuzz), where
Lmbd =diag(lam)
.
Author(s)
Steven E. Pav shabbychef@gmail.com
References
Izenman, Alan Julian. "Reduced-Rank Regression for the Multivariate Linear Model." Journal of Multivariate Analysis 5, pp 248-264 (1975). https://www.sciencedirect.com/science/article/pii/0047259X75900421
Kato, Tosio. "Perturbation Theory for Linear Operators." Springer (1995). https://www.maths.ed.ac.uk/~v1ranick/papers/kato1.pdf