| SummaryPts {mada} | R Documentation |
Use the Zwindermann & Bossuyt (2008) MCMC procedure to generate summary points (positive and negative likelihood ratio, diagnostic odds ratio) for the Reitsma et al. (2005) bivariate model
Description
Zwindermann & Bossuyt (2008) argue that likelihood ratios should not be pooled by univariate meta-analysis. They propose a sampling based approach that uses the parameters of a fit to the bivariate model (implemented in reitsma) to generate samples for observed sensitivities and false positive rates. From these samples the quantities of interest (and their confidence intervals) are estimated.
Usage
SummaryPts(object, ...)
## Default S3 method:
SummaryPts(object, mu,Sigma,alphasens = 1, alphafpr = 1,
n.iter = 10^6, FUN, ...)
## S3 method for class 'reitsma'
SummaryPts(object, n.iter = 10^6, FUN = NULL, ...)
## S3 method for class 'SummaryPts'
print(x, ...)
## S3 method for class 'SummaryPts'
summary(object, level = 0.95, digits = 3, ...)
Arguments
object |
an object for which a method exists |
x |
An object of class |
mu |
numeric of length 2, expected to be the mean parameter of a bivariate model |
Sigma |
2x2 variance covariance matrix, expected to be the matrix representing the standard error of |
alphasens |
numeric, alpha parameter for the sensitivities. Amounts to logit transformation if set to 1 (the default). See |
alphafpr |
numeric, alpha parameter for the false positive rates. Amounts to logit transformation if set to 1 (the default). See |
n.iter |
number of samples |
FUN |
A list of functions with 2 arguments ( |
level |
numeric, confidence level for confidence intervals |
digits |
number of significant digits to display |
... |
arguments to be passed on to other functions, currently ignored |
Details
Samples are generated from a bivariate normal using rmvnorm. Note that the FUN argument
Value
An object of the class SummaryPts for which print and summary methods are available.
Author(s)
Philipp Doebler <philipp.doebler@googlemail.com>
References
Reitsma, J., Glas, A., Rutjes, A., Scholten, R., Bossuyt, P., & Zwinderman, A. (2005). “Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews.” Journal of Clinical Epidemiology, 58, 982–990.
Zwinderman, A., & Bossuyt, P. (2008). “We should not pool diagnostic likelihood ratios in systematic reviews.”Statistics in Medicine, 27, 687–697.
See Also
Examples
data(Dementia)
(fit <- reitsma(Dementia))
mcmc_sum <- SummaryPts(fit, n.iter = 10^3)
## n.iter should be larger in applications!
mcmc_sum #just the means
summary(mcmc_sum) # 95% CIs by default
summary(mcmc_sum, level = 0.80, digits = 5) ## more digits, smaller CIs
## Supplying other functions
# Example 1: theta parameter of proportional hazards model
# see "phm" in mada's documentation for details on theta
theta <- function(sens,fpr){log(sens) / log(fpr)}
theta_sum <- SummaryPts(fit, FUN = list(theta = theta), n.iter = 10^3)
## n.iter should be larger in applications!
summary(theta_sum)
# compare with phm:
summary(phm(Dementia)) # the two estimators almost agree in this example
# Example 2: Youden index
Youden <- function(sens, fpr){sens - fpr}
Youden_sum <- SummaryPts(fit, FUN = list(Youden = Youden), , n.iter = 10^3)
## n.iter should be larger in applications!
summary(Youden_sum)