dtmixbeta {mable} | R Documentation |
Exponentially Tilted Mixture Beta Distribution
Description
Density, distribution function, quantile function and
pseudorandom number generation for the exponentially tilted mixture of
beta distributions, with shapes (i+1, m-i+1)
, i = 0, \ldots, m
,
given mixture proportions p=(p_0,\ldots,p_m)
and support interval
.
Usage
dtmixbeta(x, p, alpha, interval = c(0, 1), regr, ...)
ptmixbeta(x, p, alpha, interval = c(0, 1), regr, ...)
qtmixbeta(u, p, alpha, interval = c(0, 1), regr, ...)
rtmixbeta(n, p, alpha, interval = c(0, 1), regr, ...)
Arguments
x |
a vector of quantiles |
p |
a vector of |
alpha |
regression coefficients |
interval |
support/truncation interval |
regr |
regressor vector function |
... |
additional arguments to be passed to regr |
u |
a vector of probabilities |
n |
sample size |
Details
The density of the mixture exponentially tilted beta distribution on an
interval [a, b]
can be written f_m(x; p)=(b-a)^{-1}\exp(\alpha'r(x))
\sum_{i=0}^m p_i\beta_{mi}[(x-a)/(b-a)]/(b-a)
,
where p = (p_0, \ldots, p_m)
, p_i\ge 0
, \sum_{i=0}^m p_i=1
and
\beta_{mi}(u) = (m+1){m\choose i}u^i(1-x)^{m-i}
, i = 0, 1, \ldots, m
,
is the beta density with shapes (i+1, m-i+1)
. The cumulative distribution
function is F_m(x; p) = \sum_{i=0}^m p_i B_{mi}[(x-a)/(b-a);alpha]
, where
B_{mi}(u ;alpha)
, i = 0, 1, \ldots, m
, is the exponentially tilted
beta cumulative distribution function with shapes (i+1, m-i+1)
.
Value
A vector of f_m(x; p)
or F_m(x; p)
values at x
.
dmixbeta
returns the density, pmixbeta
returns the cumulative
distribution function, qmixbeta
returns the quantile function, and
rmixbeta
generates pseudo random numbers.
Author(s)
Zhong Guan <zguan@iusb.edu>
References
Guan, Z., Application of Bernstein Polynomial Model to Density and ROC Estimation in a Semiparametric Density Ratio Model
See Also
Examples
# classical Bernstein polynomial approximation
a<--4; b<-4; m<-200
x<-seq(a,b,len=512)
u<-(0:m)/m
p<-dnorm(a+(b-a)*u)
plot(x, dnorm(x), type="l")
lines(x, (b-a)*dmixbeta(x, p, c(a, b))/(m+1), lty=2, col=2)
legend(a, dnorm(0), lty=1:2, col=1:2, c(expression(f(x)==phi(x)),
expression(B^{f}*(x))))