dtmixbeta {mable} | R Documentation |
Exponentially Tilted Mixture Beta Distribution
Description
Density, distribution function, quantile function and
pseudorandom number generation for the exponentially tilted mixture of
beta distributions, with shapes ,
,
given mixture proportions
and support
interval
.
Usage
dtmixbeta(x, p, alpha, interval = c(0, 1), regr, ...)
ptmixbeta(x, p, alpha, interval = c(0, 1), regr, ...)
qtmixbeta(u, p, alpha, interval = c(0, 1), regr, ...)
rtmixbeta(n, p, alpha, interval = c(0, 1), regr, ...)
Arguments
x |
a vector of quantiles |
p |
a vector of |
alpha |
regression coefficients |
interval |
support/truncation interval |
regr |
regressor vector function |
... |
additional arguments to be passed to regr |
u |
a vector of probabilities |
n |
sample size |
Details
The density of the mixture exponentially tilted beta distribution on an
interval can be written
,
where
,
,
and
,
,
is the beta density with shapes
. The cumulative distribution
function is
, where
,
, is the exponentially tilted
beta cumulative distribution function with shapes
.
Value
A vector of or
values at
.
dmixbeta
returns the density, pmixbeta
returns the cumulative
distribution function, qmixbeta
returns the quantile function, and
rmixbeta
generates pseudo random numbers.
Author(s)
Zhong Guan <zguan@iusb.edu>
References
Guan, Z., Application of Bernstein Polynomial Model to Density and ROC Estimation in a Semiparametric Density Ratio Model
See Also
Examples
# classical Bernstein polynomial approximation
a<--4; b<-4; m<-200
x<-seq(a,b,len=512)
u<-(0:m)/m
p<-dnorm(a+(b-a)*u)
plot(x, dnorm(x), type="l")
lines(x, (b-a)*dmixbeta(x, p, c(a, b))/(m+1), lty=2, col=2)
legend(a, dnorm(0), lty=1:2, col=1:2, c(expression(f(x)==phi(x)),
expression(B^{f}*(x))))