| yls {mSimCC} | R Documentation |
Aggregate data from a microsimulated cohort
Description
Aggregates data from a microsimulated cohort.
Usage
yls(scenario1, scenario2, disc = FALSE)
Arguments
scenario1 |
microsimulated cohort. |
scenario2 |
microsimulated cohort. |
disc |
discount rate to be applied. Defaults to |
Value
Years of life saved due to strategy scenario1 compared to scenario2.
Author(s)
David Moriña (Universitat de Barcelona), Pedro Puig (Universitat Autònoma de Barcelona) and Mireia Diaz (Institut Català d'Oncologia)
References
Georgalis L, de Sanjosé S, Esnaola M, Bosch F X, Diaz M. Present and future of cervical cancer prevention in Spain: a cost-effectiveness analysis. European Journal of Cancer Prevention 2016;25(5):430-439.
Moriña D, de Sanjosé S, Diaz M. Impact of model calibration on cost-effectiveness analysis of cervical cancer prevention 2017;7.
See Also
mSimCC-package, microsim, costs, le,
plotCIN1Incidence, plotCIN2Incidence, plotCIN3Incidence,
plotIncidence, plotMortality, plotPrevalence,
qalys, bCohort
Examples
data(probs)
nsim <- 3
p.men <- 0
size <- 20
min.age <- 10
max.age <- 84
#### Natural history
hn <- microsim(seed=1234, nsim, probs, abs_states=c(10, 11), sympt_states=c(5, 6, 7, 8),
prob_sympt=c(0.11, 0.23, 0.66, 0.9),
size, p.men, min.age, max.age,
utilityCoefs = c(1, 1, 0.987, 0.87, 0.87, 0.76, 0.67, 0.67, 0.67, 0.938, 0, 0),
costCoefs.md = c(0, 0, 254.1, 1495.9, 1495.9, 5546.8, 12426.4, 23123.4,
34016.6, 0, 0, 0),
costCoefs.nmd = c(0, 0, 81.4, 194.1, 194.1, 219.1, 219.1, 219.1, 219.1, 0, 0, 0),
costCoefs.i = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), disc=3,
treatProbs=c(0,0,1,1,1,0.9894,0.9422,0.8262,0.5507,0,0,0),
nCores=1)
vacc12 <- microsim(seed=1234, nsim, probs, abs_states=c(10, 11), sympt_states=c(5, 6, 7, 8),
prob_sympt=c(0.11, 0.23, 0.66, 0.9),
size, p.men, min.age, max.age,
utilityCoefs = c(1, 1, 0.987, 0.87, 0.87, 0.76, 0.67, 0.67, 0.67, 0.938, 0, 0),
costCoefs.md = c(0, 0, 254.1, 1495.9, 1495.9, 5546.8, 12426.4, 23123.4,
34016.6, 0, 0, 0),
costCoefs.nmd = c(0, 0, 81.4, 194.1, 194.1, 219.1, 219.1, 219.1, 219.1,
0, 0, 0),
costCoefs.i = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), disc=3, vacc=TRUE,
vacc.age=12, vacc.prop=1, ndoses=3,
vacc.cov=0.828, vacc.eff=1, vacc.type="biv", vaccprice.md=33.6,
vaccprice.nmd=0, vaccprice.i=0,
treatProbs=c(0,0,1,1,1,0.9894,0.9422,0.8262,0.5507,0,0,0), nCores=1)
yls(hn, vacc12)