qalys {mSimCC} | R Documentation |
Aggregate data from a microsimulated cohort
Description
Aggregates data from a microsimulated cohort.
Usage
qalys(scenario, disc=FALSE)
Arguments
scenario |
microsimulated cohort. |
disc |
discount rate to be applied. Defaults to |
Value
Global and per-person QALYs of the considered prevention strategy.
Author(s)
David Moriña (Universitat de Barcelona), Pedro Puig (Universitat Autònoma de Barcelona) and Mireia Diaz (Institut Català d'Oncologia)
References
Georgalis L, de Sanjosé S, Esnaola M, Bosch F X, Diaz M. Present and future of cervical cancer prevention in Spain: a cost-effectiveness analysis. European Journal of Cancer Prevention 2016;25(5):430-439.
Moriña D, de Sanjosé S, Diaz M. Impact of model calibration on cost-effectiveness analysis of cervical cancer prevention 2017;7.
See Also
mSimCC-package
, microsim
, costs
, le
,
plotCIN1Incidence
, plotCIN2Incidence
, plotCIN3Incidence
,
plotIncidence
, plotMortality
, plotPrevalence
,
bCohort
, yls
Examples
data(probs)
nsim <- 3
p.men <- 0
size <- 20
min.age <- 10
max.age <- 84
#### Natural history
hn <- microsim(seed=1234, nsim, probs, abs_states=c(10, 11), sympt_states=c(5, 6, 7, 8),
prob_sympt=c(0.11, 0.23, 0.66, 0.9),
size, p.men, min.age, max.age,
utilityCoefs = c(1, 1, 0.987, 0.87, 0.87, 0.76, 0.67, 0.67, 0.67, 0.938, 0, 0),
costCoefs.md = c(0, 0, 254.1, 1495.9, 1495.9, 5546.8, 12426.4, 23123.4,
34016.6, 0, 0, 0),
costCoefs.nmd = c(0, 0, 81.4, 194.1, 194.1, 219.1, 219.1, 219.1, 219.1, 0, 0, 0),
costCoefs.i = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), disc=3,
treatProbs=c(0,0,1,1,1,0.9894,0.9422,0.8262,0.5507,0,0,0),
nCores=1) ### individual level
qalys(hn)