trfilter {mFilter}R Documentation

Trigonometric regression filter of a time series

Description

This function uses trigonometric regression filter for estimating cyclical and trend components of a time series. The function computes cyclical and trend components of the time series using a lower and upper cut-off frequency in the spirit of a band pass filter.

Usage

trfilter(x,pl=NULL,pu=NULL,drift=FALSE)

Arguments

x

a regular time series.

pl

integer. minimum period of oscillation of desired component (pl<=2).

pu

integer. maximum period of oscillation of desired component (2<=pl<pu<infinity).

drift

logical, FALSE if no drift in time series (default), TRUE if drift in time series.

Details

Almost all filters in this package can be put into the following framework. Given a time series {xt}t=1T\{x_t\}^T_{t=1} we are interested in isolating component of xtx_t, denoted yty_t with period of oscillations between plp_l and pup_u, where 2pl<pu<2 \le p_l < p_u < \infty.

Consider the following decomposition of the time series

xt=yt+xˉtx_t = y_t + \bar{x}_t

The component yty_t is assumed to have power only in the frequencies in the interval {(a,b)(a,b)}(π,π)\{(a,b) \cup (-a,-b)\} \in (-\pi, \pi). aa and bb are related to plp_l and pup_u by

a=2πpu     b=2πpla=\frac{2 \pi}{p_u}\ \ \ \ \ {b=\frac{2 \pi}{p_l}}

If infinite amount of data is available, then we can use the ideal bandpass filter

yt=B(L)xty_t = B(L)x_t

where the filter, B(L)B(L), is given in terms of the lag operator LL and defined as

B(L)=j=BjLj,   Lkxt=xtkB(L) = \sum^\infty_{j=-\infty} B_j L^j, \ \ \ L^k x_t = x_{t-k}

The ideal bandpass filter weights are given by

Bj=sin(jb)sin(ja)πjB_j = \frac{\sin(jb)-\sin(ja)}{\pi j}

B0=baπB_0=\frac{b-a}{\pi}

Let TT be even and define n1=T/pun_1=T/p_u and n2=T/pln_2=T/p_l. The trigonometric regression filter is based on the following relation

yt=j=n2n1{ajcos(ωjt)+bjsin(ωjt)}{y}_t=\sum^{n_1}_{j=n_2}\left\{ a_j \cos(\omega_j t) + b_j \sin(\omega_j t) \right\}

where aja_j and bjb_j are the coefficients obtained by regressing xtx_t on the indicated sine and cosine functions. Specifically,

aj=T2t=1Tcos(ωjt)xt,   a_j=\frac{T}{2}\sum^{T}_{t=1}\cos(\omega_j t) x_t,\ \ \ for j=1,,T/21j=1,\dots,T/2-1

aj=T2t=1Tcos(πt)xt,   a_j=\frac{T}{2}\sum^{T}_{t=1}\cos(\pi t) x_t,\ \ \ for j=T/2j=T/2

and

bj=T2t=1Tsin(ωjt)xt,   b_j=\frac{T}{2}\sum^{T}_{t=1}\sin(\omega_j t) x_t,\ \ \ for j=1,,T/21j=1,\dots,T/2-1

bj=T2t=1Tsin(πt)xt,   b_j=\frac{T}{2}\sum^{T}_{t=1}\sin(\pi t) x_t,\ \ \ for j=T/2j=T/2

Let B^(L)xt\hat{B}(L) x_t be the trigonometric regression filter. It can be showed that B^(1)=0\hat{B}(1)=0, so that B^(L)\hat{B}(L) has a unit root for t=1,2,,Tt=1,2,\dots,T. Also, when B^(L)\hat{B}(L) is symmetric, it has a second unit root in the middle of the data for tt. Therefore it is important to drift adjust data before it is filtered with a trigonometric regression filter.

If drift=TRUE the drift adjusted series is obtained as

x~t=xtt(xTx1T1),  t=0,1,,T1\tilde{x}_{t}=x_t-t\left(\frac{x_{T}-x_{1}}{T-1}\right), \ \ t=0,1,\dots,T-1

where x~t\tilde{x}_{t} is the undrifted series.

Value

A "mFilter" object (see mFilter).

Author(s)

Mehmet Balcilar, mehmet@mbalcilar.net

References

M. Baxter and R.G. King. Measuring business cycles: Approximate bandpass filters. The Review of Economics and Statistics, 81(4):575-93, 1999.

L. Christiano and T.J. Fitzgerald. The bandpass filter. International Economic Review, 44(2):435-65, 2003.

J. D. Hamilton. Time series analysis. Princeton, 1994.

R.J. Hodrick and E.C. Prescott. Postwar US business cycles: an empirical investigation. Journal of Money, Credit, and Banking, 29(1):1-16, 1997.

R.G. King and S.T. Rebelo. Low frequency filtering and real business cycles. Journal of Economic Dynamics and Control, 17(1-2):207-31, 1993.

D.S.G. Pollock. Trend estimation and de-trending via rational square-wave filters. Journal of Econometrics, 99:317-334, 2000.

See Also

mFilter, hpfilter, cffilter, bkfilter, bwfilter

Examples

## library(mFilter)

data(unemp)

opar <- par(no.readonly=TRUE)

unemp.tr <- trfilter(unemp, drift=TRUE)
plot(unemp.tr)
unemp.tr1 <- trfilter(unemp, drift=TRUE)
unemp.tr2 <- trfilter(unemp, pl=8,pu=40,drift=TRUE)
unemp.tr3 <- trfilter(unemp, pl=2,pu=60,drift=TRUE)
unemp.tr4 <- trfilter(unemp, pl=2,pu=40,drift=TRUE)

par(mfrow=c(2,1),mar=c(3,3,2,1),cex=.8)
plot(unemp.tr1$x,
main="Trigonometric regression filter of unemployment: Trend, drift=TRUE",
     col=1, ylab="")
lines(unemp.tr1$trend,col=2)
lines(unemp.tr2$trend,col=3)
lines(unemp.tr3$trend,col=4)
lines(unemp.tr4$trend,col=5)
legend("topleft",legend=c("series", "pl=2, pu=32", "pl=8, pu=40",
"pl=2, pu=60", "pl=2, pu=40"), col=1:5, lty=rep(1,5), ncol=1)

plot(unemp.tr1$cycle,
main="Trigonometric regression filter of unemployment: Cycle,drift=TRUE",
     col=2, ylab="", ylim=range(unemp.tr3$cycle,na.rm=TRUE))
lines(unemp.tr2$cycle,col=3)
lines(unemp.tr3$cycle,col=4)
lines(unemp.tr4$cycle,col=5)
## legend("topleft",legend=c("pl=2, pu=32", "pl=8, pu=40", "pl=2, pu=60",
## "pl=2, pu=40"), col=1:5, lty=rep(1,5), ncol=1)

par(opar)

[Package mFilter version 0.1-5 Index]