bwfilter {mFilter} | R Documentation |
Butterworth filter of a time series
Description
Filters a time series using the Butterworth square-wave highpass filter described in Pollock (2000).
Usage
bwfilter(x,freq=NULL,nfix=NULL,drift=FALSE)
Arguments
x |
a regular time series |
nfix |
sets the order of the filter. The default is
|
freq |
integer, the cut-off frequency of the Butterworth
filter. The default is |
drift |
logical, |
Details
Almost all filters in this package can be put into the
following framework. Given a time series \{x_t\}^T_{t=1}
we are
interested in isolating component of x_t
, denoted y_t
with
period of oscillations between p_l
and p_u
, where 2
\le p_l < p_u < \infty
.
Consider the following decomposition of the time series
x_t = y_t + \bar{x}_t
The component y_t
is assumed to have power only in the frequencies
in the interval \{(a,b) \cup (-a,-b)\} \in (-\pi, \pi)
. a
and b
are related to p_l
and p_u
by
a=\frac{2 \pi}{p_u}\ \ \ \ \ {b=\frac{2 \pi}{p_l}}
If infinite amount of data is available, then we can use the ideal bandpass filter
y_t = B(L)x_t
where the filter, B(L)
, is given in terms of the lag operator
L
and defined as
B(L) = \sum^\infty_{j=-\infty} B_j L^j, \ \ \ L^k x_t = x_{t-k}
The ideal bandpass filter weights are given by
B_j = \frac{\sin(jb)-\sin(ja)}{\pi j}
B_0=\frac{b-a}{\pi}
The digital version of the Butterworth highpass filter is described by the rational polynomial expression (the filter's z-transform)
\frac{\lambda(1-z)^n(1-z^{-1})^n}{(1+z)^n(1+z^{-1})^n+\lambda(1-z)^n(1-z^{-1})^n}
The time domain version can be obtained by substituting z
for the
lag operator L
.
Pollock derives a specialized finite-sample version of the Butterworth
filter on the basis of signal extraction theory. Let s_t
be the
trend and c_t
cyclical component of y_t
, then these
components are extracted as
y_t=s_t+c_t=\frac{(1+L)^n}{(1-L)^d}\nu_t+(1-L)^{n-d}\varepsilon_t
where \nu_t \sim N(0,\sigma_\nu^2)
and \varepsilon_t \sim N(0,\sigma_\varepsilon^2)
.
If drift=TRUE
the drift adjusted series is obtained as
\tilde{x}_{t}=x_t-t\left(\frac{x_{T}-x_{1}}{T-1}\right), \ \ t=0,1,\dots,T-1
where \tilde{x}_{t}
is the undrifted series.
Value
A "mFilter
" object (see mFilter
).
Author(s)
Mehmet Balcilar, mehmet@mbalcilar.net
References
M. Baxter and R.G. King. Measuring business cycles: Approximate bandpass filters. The Review of Economics and Statistics, 81(4):575-93, 1999.
L. Christiano and T.J. Fitzgerald. The bandpass filter. International Economic Review, 44(2):435-65, 2003.
J. D. Hamilton. Time series analysis. Princeton, 1994.
R.J. Hodrick and E.C. Prescott. Postwar US business cycles: an empirical investigation. Journal of Money, Credit, and Banking, 29(1):1-16, 1997.
R.G. King and S.T. Rebelo. Low frequency filtering and real business cycles. Journal of Economic Dynamics and Control, 17(1-2):207-31, 1993.
D.S.G. Pollock. Trend estimation and de-trending via rational square-wave filters. Journal of Econometrics, 99:317-334, 2000.
See Also
mFilter
, hpfilter
, cffilter
,
bkfilter
, trfilter
Examples
## library(mFilter)
data(unemp)
opar <- par(no.readonly=TRUE)
unemp.bw <- bwfilter(unemp)
plot(unemp.bw)
unemp.bw1 <- bwfilter(unemp, drift=TRUE)
unemp.bw2 <- bwfilter(unemp, freq=8,drift=TRUE)
unemp.bw3 <- bwfilter(unemp, freq=10, nfix=3, drift=TRUE)
unemp.bw4 <- bwfilter(unemp, freq=10, nfix=4, drift=TRUE)
par(mfrow=c(2,1),mar=c(3,3,2,1),cex=.8)
plot(unemp.bw1$x,
main="Butterworth filter of unemployment: Trend,
drift=TRUE",col=1, ylab="")
lines(unemp.bw1$trend,col=2)
lines(unemp.bw2$trend,col=3)
lines(unemp.bw3$trend,col=4)
lines(unemp.bw4$trend,col=5)
legend("topleft",legend=c("series", "freq=10, nfix=2",
"freq=8, nfix=2", "freq=10, nfix=3", "freq=10, nfix=4"),
col=1:5, lty=rep(1,5), ncol=1)
plot(unemp.bw1$cycle,
main="Butterworth filter of unemployment: Cycle,drift=TRUE",
col=2, ylab="", ylim=range(unemp.bw3$cycle,na.rm=TRUE))
lines(unemp.bw2$cycle,col=3)
lines(unemp.bw3$cycle,col=4)
lines(unemp.bw4$cycle,col=5)
## legend("topleft",legend=c("series", "freq=10, nfix=2", "freq=8,
## nfix=2", "freq## =10, nfix=3", "freq=10, nfix=4"), col=1:5,
## lty=rep(1,5), ncol=1)
par(opar)