| bkfilter {mFilter} | R Documentation | 
Baxter-King filter of a time series
Description
This function implements the Baxter-King approximation to the band pass filter for a time series. The function computes cyclical and trend components of the time series using band-pass approximation for fixed and variable length filters.
Usage
bkfilter(x,pl=NULL,pu=NULL,nfix=NULL,type=c("fixed","variable"),drift=FALSE)
Arguments
| x | a regular time series | 
| type | character, indicating the filter type,
 | 
| pl | integer. minimum period of oscillation of desired component (pl<=2). | 
| pu | integer. maximum period of oscillation of desired component (2<=pl<pu<infinity). | 
| drift | logical,  | 
| nfix | sets fixed lead/lag length or order of the filter. The
 | 
Details
Almost all filters in this package can be put into the
following framework. Given a time series \{x_t\}^T_{t=1} we are
interested in isolating component of x_t, denoted y_t with
period of oscillations between p_l and p_u, where 2
  \le p_l < p_u < \infty.
Consider the following decomposition of the time series
x_t = y_t + \bar{x}_t
The component y_t is assumed to have power only in the frequencies
in the interval \{(a,b) \cup (-a,-b)\} \in (-\pi, \pi). a
and b are related to p_l and p_u by
a=\frac{2 \pi}{p_u}\ \ \ \ \ {b=\frac{2 \pi}{p_l}}
If infinite amount of data is available, then we can use the ideal bandpass filter
y_t = B(L)x_t
where the filter, B(L), is given in terms of the lag operator
L and defined as
B(L) = \sum^\infty_{j=-\infty} B_j L^j, \ \ \ L^k x_t = x_{t-k}
The ideal bandpass filter weights are given by
B_j = \frac{\sin(jb)-\sin(ja)}{\pi j}
B_0=\frac{b-a}{\pi}
The Baxter-King filter is a finite data approximation to the ideal bandpass filter with following moving average weights
y_t = \hat{B}(L)x_t=\sum^{n}_{j=-n}\hat{B}_{j} x_{t+j}=\hat{B}_0
  x_t + \sum^{n}_{j=1} \hat{B}_j (x_{t-j}+x_{t+j})
where
\hat{B}_j=B_j-\frac{1}{2n+1}\sum^{n}_{j=-n}B_{j}
If drift=TRUE the drift adjusted series is obtained
\tilde{x}_{t}=x_t-t\left(\frac{x_{T}-x_{1}}{T-1}\right), \ \ t=0,1,\dots,T-1
where \tilde{x}_{t} is the undrifted series.
Value
A "mFilter" object (see mFilter).
Author(s)
Mehmet Balcilar, mehmet@mbalcilar.net
References
M. Baxter and R.G. King. Measuring business cycles: Approximate bandpass filters. The Review of Economics and Statistics, 81(4):575-93, 1999.
L. Christiano and T.J. Fitzgerald. The bandpass filter. International Economic Review, 44(2):435-65, 2003.
J. D. Hamilton. Time series analysis. Princeton, 1994.
R.J. Hodrick and E.C. Prescott. Postwar US business cycles: an empirical investigation. Journal of Money, Credit, and Banking, 29(1):1-16, 1997.
R.G. King and S.T. Rebelo. Low frequency filtering and real business cycles. Journal of Economic Dynamics and Control, 17(1-2):207-31, 1993.
D.S.G. Pollock. Trend estimation and de-trending via rational square-wave filters. Journal of Econometrics, 99:317-334, 2000.
See Also
mFilter, bwfilter, cffilter,
hpfilter, trfilter
Examples
## library(mFilter)
data(unemp)
opar <- par(no.readonly=TRUE)
unemp.bk <- bkfilter(unemp)
plot(unemp.bk)
unemp.bk1 <- bkfilter(unemp, drift=TRUE)
unemp.bk2 <- bkfilter(unemp, pl=8,pu=40,drift=TRUE)
unemp.bk3 <- bkfilter(unemp, pl=2,pu=60,drift=TRUE)
unemp.bk4 <- bkfilter(unemp, pl=2,pu=40,drift=TRUE)
par(mfrow=c(2,1),mar=c(3,3,2,1),cex=.8)
plot(unemp.bk1$x,
    main="Baxter-King filter of unemployment: Trend, drift=TRUE",
    col=1, ylab="")
lines(unemp.bk1$trend,col=2)
lines(unemp.bk2$trend,col=3)
lines(unemp.bk3$trend,col=4)
lines(unemp.bk4$trend,col=5)
legend("topleft",legend=c("series", "pl=2, pu=32", "pl=8, pu=40",
      "pl=2, pu=60", "pl=2, pu=40"), col=1:5, lty=rep(1,5), ncol=1)
plot(unemp.bk1$cycle,
main="Baxter-King filter of unemployment: Cycle,drift=TRUE",
      col=2, ylab="", ylim=range(unemp.bk3$cycle,na.rm=TRUE))
lines(unemp.bk2$cycle,col=3)
lines(unemp.bk3$cycle,col=4)
lines(unemp.bk4$cycle,col=5)
## legend("topleft",legend=c("pl=2, pu=32", "pl=8, pu=40", "pl=2, pu=60",
## "pl=2, pu=40"), col=1:5, lty=rep(1,5), ncol=1)
par(opar)