mExplorer {mExplorer}R Documentation

Selection of process-specific regulators from high-throughput data using multinomial regression models.

Description

Selection of process-specific regulators from high-throughput data using multinomial regression models.

Usage

mExplorer(dframe, response, interactions = F, significance = 0.05,
  n_cores = 1, multitest = "BY")

Arguments

dframe

Data frame of predictors. Row and column names are required for identifying samples (genes) and predictors (gene regulators), respectively.

response

Vector of factors. Names of vector need to correspond to rownames in dframe.

interactions

If enabled, pairs of predictors as interactions will be evaluated (much slower).

significance

Significance cutoff for p-values from log likelihood ratio tests.

n_cores

Number of processor cores to engage in computation. Use all available cores by default (n_cores=0).

multitest

Method to perform multiple testing correction for p-values from predictor evaluation. See p.adjust() for details.

Value

Vector of scores, with names corresponding to predictors.

Author(s)

Juri Reimand <juri.reimand@utoronto.ca>

References

m:Explorer - multinomial regression models reveal positive and negative regulators of longevity in yeast quiescence (2012, Genome Biology) by Juri Reimand, Anu Aun, Jaak Vilo, Juan M. Vaquerizas, Juhan Sedman, and Nicholas M. Luscombe

Examples


data(yeastCCgenes)
data(yeastTFdata)
mExplorer(yeastTFdata, yeastCCgenes)

data(mExplorer_small_test_data)
small_test_results = mExplorer(small_test_dframe, small_test_response_vec)

[Package mExplorer version 1.0.0 Index]