mAr.sim {mAr} | R Documentation |
Simulation from a multivariate AR(p) model
Description
Simulation from an m-variate AR(p) model
Usage
mAr.sim(w, A, C, N, ...)
Arguments
w |
vector of intercept terms |
A |
matrix of AR coefficients |
C |
noise covariance matrix |
N |
length of output time series |
... |
additional arguments |
Details
Simulation from an m-variate AR(p) model given by
X[t]=w + A1 X[t-1] +...+ Ap X[t-p] +e[t]
where
X[t]=[X1(t)...Xm(t)]' is a vector of length m
w is a m-length vector of intercept terms
A=[A1 ... Ap] is a m x mp matrix of autoregressive coefficients
e(t) is a m-length uncorrelated noise vector with mean 0 and m x m covariance matrix C
Value
returns a list containg the N simulated observations for each of the m time series
Author(s)
S. M. Barbosa
References
Neumaier, A. and Schneider, T. (2001), Estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Transactions on Mathematical Software, 27, 1, 27-57.
Schneider, T. and Neumaier, A. (2001), A Matlab package fo the estimation of parameters and eigenmodes of multivariate autoregressive models, 27, 1, 58-65.
Lutkepohl, H. (1993), Introduction to Multiple Time Series Analysis. Springer-Verlag, Berlin.
Examples
w=c(0.25,0.1)
C=rbind(c(1,0.5),c(0.5,1.5))
A=rbind(c(0.4,1.2,0.35,-0.3),c(0.3,0.7,-0.4,-0.5))
x=mAr.sim(w,A,C,N=300)