mAr.pca {mAr} | R Documentation |
Multivariate autoregressive analysis in PCA space
Description
Estimation of m-variate AR(p) model in reduced PCA space (for dimensionality reduction) and eigen-decomposition of augmented coefficient matrix
Usage
mAr.pca(x, p, k = dim(x)[2], ...)
Arguments
x |
matrix of multivariate time series |
p |
model order |
k |
number of principal components to retain |
... |
additional arguments for specific methods |
Value
A list with components:
p |
model order |
SBC |
Schwartz Bayesian Criterion |
fraction.variance |
fraction of variance explained by the retained components |
resid |
residuals from the fitted model |
eigv |
m*p m-dimensional eigenvectors |
modes |
periods and damping times associated to each eigenmode |
Author(s)
S. M. Barbosa
References
Neumaier, A. and Schneider, T. (2001), Estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Transactions on Mathematical Software, 27, 1, 27-57.
See Also
Examples
data(sparrows)
A=mAr.est(sparrows,1)$AHat
mAr.eig(A)$modes
mAr.pca(sparrows,1,k=4)$modes
[Package mAr version 1.2-0 Index]