mAr.est {mAr} | R Documentation |
Estimation of multivariate AR(p) model
Description
Stepwise least-squares estimation of a multivariate AR(p) model based on the algorithm of Neumaier and Schneider (2001).
Usage
mAr.est(x, p, ...)
Arguments
x |
matrix of multivariate time series |
p |
model order |
... |
additional arguments for specific methods |
Details
Fits by stepwise least squares an m-variate AR(p) model given by
X[t]=w + A1 X[t-1] +...+ Ap X[t-p] +e[t]
where
X[t]=[X1(t)...Xm(t)]' is a vector of length m
w is a m-length vector of intercept terms
A=[A1 ... Ap] is a mp x m matrix of autoregressive coefficients
e(t) is a m-length uncorrelated noise vector with mean 0 and m x m covariance matrix C
Value
A list with components:
SBC |
Schwartz Bayesian Criterion |
wHat |
vector of intercept terms |
AHat |
matrix of estimated autoregression coefficients for the fitted model |
CHat |
noise covariance matrix |
resid |
residuals from the fitted model |
Author(s)
S. M. Barbosa
References
Barbosa S.M., Silva M.E., Fernandes M.J. (2006), Multivariate autoregressive modelling of sea level time series from TOPEX/Poseidon satellite altimetry. Nonlinear Processes in Geophysics, 13, 177-184.
Neumaier, A. and Schneider, T. (2001), Estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Transactions on Mathematical Software, 27, 1, 27-57.
Schneider, T. and Neumaier, A. (2001), A Matlab package fo the estimation of parameters and eigenmodes of multivariate autoregressive models, 27, 1, 58-65.
Lutkepohl, H. (1993), Introduction to Multiple Time Series Analysis. Springer-Verlag, Berlin.
Examples
data(pinkham)
y=mAr.est(pinkham,2,5)