ideal {m2r} | R Documentation |
Create a new ideal in Macaulay2
Description
Create a new ideal in Macaulay2
Usage
ideal(..., raw_chars = FALSE, code = FALSE)
ideal.(..., raw_chars = FALSE, code = FALSE)
ideal_(x, raw_chars = FALSE, code = FALSE, ...)
ideal_.(x, raw_chars = FALSE, code = FALSE, ...)
## S3 method for class 'm2_ideal'
print(x, ...)
## S3 method for class 'm2_ideal_list'
print(x, ...)
radical(ideal, ring, code = FALSE, ...)
radical.(ideal, ring, code = FALSE, ...)
saturate(I, J, code = FALSE, ...)
saturate.(I, J, code = FALSE, ...)
quotient(I, J, code = FALSE, ...)
quotient.(I, J, code = FALSE, ...)
primary_decomposition(ideal, code = FALSE, ...)
primary_decomposition.(ideal, code = FALSE, ...)
dimension(ideal, code = FALSE, ...)
## S3 method for class 'm2_ideal'
e1 + e2
## S3 method for class 'm2_ideal'
e1 * e2
## S3 method for class 'm2_ideal'
e1 == e2
## S3 method for class 'm2_ideal'
e1 ^ e2
Arguments
... |
... |
raw_chars |
if |
code |
return only the M2 code? (default: |
x |
a listing of polynomials. several formats are accepted, see examples. |
ideal |
an ideal object of class |
ring |
the referent ring in Macaulay2 |
I , J |
ideals or objects parsable into ideals |
e1 , e2 |
ideals for arithmetic |
Value
a reference to a Macaulay2 ideal
Examples
## Not run: requires Macaulay2
##### basic usage
########################################
ring("x", "y", coefring = "QQ")
ideal("x + y", "x^2 + y^2")
##### different versions of gb
########################################
# standard evaluation version
poly_chars <- c("x + y", "x^2 + y^2")
ideal_(poly_chars)
# reference nonstandard evaluation version
ideal.("x + y", "x^2 + y^2")
# reference standard evaluation version
ideal_.(poly_chars)
##### different inputs to gb
########################################
ideal_( c("x + y", "x^2 + y^2") )
ideal_(mp(c("x + y", "x^2 + y^2")))
ideal_(list("x + y", "x^2 + y^2") )
##### predicate functions
########################################
I <- ideal ("x + y", "x^2 + y^2")
I. <- ideal.("x + y", "x^2 + y^2")
is.m2_ideal(I)
is.m2_ideal(I.)
is.m2_ideal_pointer(I)
is.m2_ideal_pointer(I.)
##### ideal radical
########################################
I <- ideal("(x^2 + 1)^2 y", "y + 1")
radical(I)
radical.(I)
##### ideal dimension
########################################
I <- ideal_(c("(x^2 + 1)^2 y", "y + 1"))
dimension(I)
# dimension of a line
ring("x", "y", coefring = "QQ")
I <- ideal("y - (x+1)")
dimension(I)
# dimension of a plane
ring("x", "y", "z", coefring = "QQ")
I <- ideal("z - (x+y+1)")
dimension(I)
##### ideal quotients and saturation
########################################
ring("x", "y", "z", coefring = "QQ")
(I <- ideal("x^2", "y^4", "z + 1"))
(J <- ideal("x^6"))
quotient(I, J)
quotient.(I, J)
saturate(I)
saturate.(I)
saturate(I, J)
saturate(I, mp("x"))
saturate(I, "x")
ring("x", "y", coefring = "QQ")
saturate(ideal("x y"), "x^2")
# saturation removes parts of varieties
# solution over R is x = -1, 0, 1
ring("x", coefring = "QQ")
I <- ideal("(x-1) x (x+1)")
saturate(I, "x") # remove x = 0 from solution
ideal("(x-1) (x+1)")
##### primary decomposition
########################################
ring("x", "y", "z", coefring = "QQ")
I <- ideal("(x^2 + 1) (x^2 + 2)", "y + 1")
primary_decomposition(I)
primary_decomposition.(I)
I <- ideal("x (x + 1)", "y")
primary_decomposition(I)
# variety = z axis union x-y plane
(I <- ideal("x z", "y z"))
dimension(I) # = max dimension of irreducible components
(Is <- primary_decomposition(I))
dimension(Is)
##### ideal arithmetic
########################################
ring("x", "y", "z", coefring = "RR")
# sums (cox et al., 184)
(I <- ideal("x^2 + y"))
(J <- ideal("z"))
I + J
# products (cox et al., 185)
(I <- ideal("x", "y"))
(J <- ideal("z"))
I * J
# equality
(I <- ideal("x", "y"))
(J <- ideal("z"))
I == J
I == I
# powers
(I <- ideal("x", "y"))
I^3
## End(Not run)
[Package m2r version 1.0.2 Index]