resRF {m2b} | R Documentation |
Random forest model outputs for a xytb object
Description
Diagnostic plots and tables for the random forest model used to predict behaviour on a xytb objecti (random forest convergence plot, variable importance plot, cross-validation plot, confusion matrix of the observed vs predicted behaviours).
Usage
resRF(xytb, type = "rf")
Arguments
xytb |
An xytb object with a model. |
type |
|
Value
plots or tables.
Author(s)
Laurent Dubroca
See Also
See randomForest
Examples
## Not run:
#track_CAGA_005 is dataset
#generate a complete xytb object with derived (over moving windows of 3, 5
#and 9 points, with quantile at 0, 50 and 100%) and shifted information on 10
#and 100 points
xytb<-xytb(track_CAGA_005,"a track",c(3,5,9),c(0,.5,1),c(10,100))
#compute a random forest model to predict behaviour (b, where -1 is
#unobserved behaviour) using the derived
#parameters ("actual")
xytb<-modelRF(xytb,"actual",nob="-1",colin=TRUE,varkeep=c("v","thetarel"),
zerovar=TRUE,rfcv=TRUE,step=.9)
#modelling results
resRF(xytb,type="rf")
resRF(xytb,type="importance")
resRF(xytb,type="rfcv")
resRF(xytb,type="confusion")
## End(Not run)
[Package m2b version 1.0 Index]