lwqs {lwqs} | R Documentation |
Wrapper function for the implementaion of lagged WQS.
Description
Wrapper function for the implementaion of lagged WQS.
Usage
lwqs(
data,
timevar,
wqs_parms,
outcome,
ID,
rDLM_parms = list(formula = wqs ~ s(time, by = y, bs = "cr"), random = ~(1 | id))
)
Arguments
data |
Data frame containing observations in long format. |
timevar |
Enquoted variable name identifying the repeated measure / time variable |
wqs_parms |
A list containing parameters to be passed to the WQS algorithm. See gWQS package for details. |
outcome |
An enquoted variable name identifying the outcome measure |
ID |
An enquoted variable name identifying the subject identifier |
rDLM_parms |
(optional). A list containing parameters to be passed to the GAM algorithm. See gamm4 package for details. Parameters wqs, time, by, and id (see above) are created by the lwqs function and passed to the gamm4 function automatically. |
Value
The lwqs
function returns a list containing final model output and time-specific model parameters.
parameters |
This list contains several objects summarizing different stages of the lagged ensemble model. The first
object, |
plot |
This list contains two plots (as grobs) which summarize output of the lwqs algorithm. |
Examples
# identify predictor variables used in mixture
mixvars=names(lwqs_data)[5:9]
model=lwqs(data=lwqs_data,
timevar="time",
wqs_parms=list(formula=out ~ wqs,
data = lwqs_data,
mix_name=mixvars,
b1_constr = TRUE,
b1_pos=TRUE,
b = 5,
q = 5,
validation = 0,
family = "gaussian",
seed = 1),
outcome="out",
ID="ID")