EBIClvglasso {lvnet} | R Documentation |
Latent variable graphical LASSO using EBIC to select optimal tuning parameter
Description
This function minimizes the Extended Bayesian Information Criterion (EBIC; Chen and Chen, 2008) to choose the lvglasso tuning parameter. See lvglasso
Usage
EBIClvglasso(S, n, nLatents, gamma = 0.5, nRho = 100, lambda, ...)
Arguments
S |
Sample variance-covariance matrix |
n |
Sample Size |
nLatents |
Number of latent variables |
gamma |
EBIC hyper-parameter |
nRho |
Number of tuning parameters to test |
lambda |
The lambda argument containing factor loadings, only used for starting values! |
... |
Arguments sent to |
Value
The optimal result of lvglasso
, with two more elements:
rho |
The selected tuning parameter |
ebic |
The optimal EBIC |
Author(s)
Sacha Epskamp <mail@sachaepskamp.com>
References
Chen, J., & Chen, Z. (2008). Extended Bayesian information criteria for model selection with large model spaces. Biometrika, 95(3), 759-771.
See Also
[Package lvnet version 0.3.5 Index]