| summary.ltmle {ltmle} | R Documentation |
Get standard error, p-value, and confidence interval for one ltmle object Summarizing results from Longitudinal Targeted Maximum Likelihood Estimation (ltmle)
Description
These functions are methods for class ltmle or summary.ltmle
objects.
Usage
## S3 method for class 'ltmle'
summary(object, estimator = ifelse(object$gcomp, "gcomp", "tmle"), ...)
## S3 method for class 'ltmleEffectMeasures'
summary(object, estimator = ifelse(object$gcomp, "gcomp", "tmle"), ...)
## S3 method for class 'ltmleMSM'
summary(object, estimator = ifelse(object$gcomp, "gcomp", "tmle"), ...)
## S3 method for class 'summary.ltmleMSM'
print(
x,
digits = max(3, getOption("digits") - 3),
signif.stars = getOption("show.signif.stars"),
...
)
## S3 method for class 'summary.ltmle'
print(x, ...)
## S3 method for class 'ltmleEffectMeasures'
print(x, ...)
## S3 method for class 'summary.ltmleEffectMeasures'
print(x, ...)
## S3 method for class 'ltmleMSM'
print(x, ...)
## S3 method for class 'ltmle'
print(x, ...)
Arguments
object |
an object of class " |
estimator |
character; one of "tmle", "iptw", "gcomp". The estimator for which to get effect measures. "tmle" is valid iff the original ltmle/ltmleMSM call used gcomp=FALSE. "gcomp" is valid iff the original ltmle/ltmleMSM call used gcomp=TRUE |
... |
further arguments passed to or from other methods. |
x |
an object of class " |
digits |
the number of significant digits to use when printing. |
signif.stars |
logical. If |
Details
summary.ltmle returns the parameter value of the estimator, the
estimated variance, a 95 percent confidence interval, and a p-value.
summary.ltmleEffectMeasures returns the additive treatment effect for
each of the two objects in the abar list passed to ltmle.
Relative risk, and odds ratio are also returned, along with the variance,
confidence interval, and p-value for each.
summary.ltmleMSM returns a matrix of MSM parameter estimates.
Value
summary.ltmle returns an object of class
"summary.ltmle", a list with components
treatment |
a list with
components summarizing the estimate of
|
call |
the matched call to |
estimator |
the |
variance.estimate.ratio |
ratio of the TMLE based variance estimate to the influence curve based variance estimate |
summary.ltmleEffectMeasures returns an object of class
"summary.ltmleEffectMeasures", a list with same components as
summary.ltmle above, but also includes:
effect.measures |
a list
with components, each with the same components as
|
summary.ltmleMSM returns an object of class
"summary.ltmleMSM", a matrix with rows for each MSM parameter and
columns for the point estimate, standard error, 2.5percent confidence
interval, 97.5percent confidence interval, and p-value.
See Also
Examples
rexpit <- function(x) rbinom(n = length(x), size = 1, prob = plogis(x))
# Compare the expected outcomes under two counterfactual plans: Treatment plan:
# set A1 to 1 if W > 0, set A2 to 1 if W > 1.5, always set A3 to 1 Control plan:
# always set A1, A2, and A3 to 0
W <- rnorm(1000)
A1 <- rexpit(W)
A2 <- rexpit(W + 2 * A1)
A3 <- rexpit(2 * A1 - A2)
Y <- rexpit(W - A1 + 0.5 * A2 + 2 * A3)
data <- data.frame(W, A1, A2, A3, Y)
treatment <- cbind(W > 0, W > 1.5, 1)
control <- matrix(0, nrow = 1000, ncol = 3)
result <- ltmle(data, Anodes = c("A1", "A2", "A3"), Ynodes = "Y", abar = list(treatment,
control))
print(summary(result))
## For examples of summary.ltmle and summary.ltmleMSM, see example(ltmle)