ltmm {ltmix} | R Documentation |
Fit a Left-truncated mixture model (LTMM)
Description
This function generates a mixture model combining left-truncated lognormal, gamma, and weibull distributions
Usage
ltmm(
x,
G,
distributions,
trunc = NULL,
EM_init_method = "emEM",
EM_starts = 5,
init_pars = NULL,
init_pi = NULL,
init_classes = NULL,
one_group_reps = 50,
eps = 1e-06,
max.it = 1000,
verbose = FALSE
)
Arguments
x |
data vector |
G |
number of components |
distributions |
densities to combine |
trunc |
left truncation point (optional) |
EM_init_method |
initialization method for EM algorithm |
EM_starts |
number of random starts for initialization of EM algorithm. (only for G > 1) |
init_pars |
initial parameter values (list of length G) |
init_pi |
manually specified initial component proportions (for init_method=specified) |
init_classes |
manually specified initial classes. will overwrite init_pars and init_pi |
one_group_reps |
number of random starts for each numerical optimization in 1-component model |
eps |
stopping tolerance for EM algoithm |
max.it |
maximum number of iterations of EM algorithm |
verbose |
print information as fitting progresses? |
Value
An ltmm model object, with the following properties:
- x
Copy of the input data
- distributions
The selected distributions
- trunc
The left truncation value, if specified
- fitted_pdf
The probability density function of the fitted model
- fitted_cfd
The cumulative density function of the fitted model
- VaR
The value-at-risk of the fitted model (function with p taken as onl yargument)
- ES
The expected shortfall of the fitted model (function with p taken as onl yargument)
- G
The number of components in the model
- Pi
The estimated probabilites of component membership
- Pars
The estimated model parameters
- ll
The log-likelihood of the fitted model
- bic
The BIC of the fitted model
- aic
The AIC of the fitted model
- id
The MAP component membership for each observation
- iter
The number of iterations until convergence for the EM algorithm
- npars
The total number of model parameters for the fitted model
- ll.history
The value of log-likelihood at each iteration of the EM algorithm
Examples
x <- secura$Loss
fit <- ltmm(x, G = 2, distributions = c('gamma', 'gamma', 'weibull'), trunc = 1.2e6)
summary(fit)
plot(fit)