plot.lsm {lsm} | R Documentation |
Graphics Method for lsm
Objects
Description
Obtains graphics from a fitted lsm
object.
Usage
## S3 method for class 'lsm'
plot(
x,
type = c("scatter", "probability", "Logit", "odds"),
title = NULL,
xlab = NULL,
ylab = NULL,
color = "red",
size = 1.5,
shape = 19,
...
)
Arguments
x |
The LSM model object. |
type |
The type of plot to draw. Options are "scatter" for a scatter plot, "probability" for a probability plot, "Logit" for a plot related to logistic regression, and "odds" for a plot related to odds. |
title |
The title of the plot. |
xlab |
The label for the x-axis. |
ylab |
The label for the y-axis. |
color |
The color of the dots in the plot. |
size |
The size of the dots in the plot. |
shape |
The shape oof the dots in the plot. |
... |
Additional graphical arguments to be passed to ggplot. |
Details
Gráfico de regresión logística
The saturated model is characterized by the assumptions 1 and 2 presented in section 2.3 by Llinas (2006, ISSN:2389-8976).
Value
Un objeto ggplot. following components:
Author(s)
Jorge Villalba Acevedo [cre, aut], (Universidad Tecnológica de Bolívar, Cartagena-Colombia).
References
[1] LLinás, H. J. (2006). Precisiones en la teoría de los modelos logísticos. Revista Colombiana de Estadística, 29(2), 239–265. https://revistas.unal.edu.co/index.php/estad/article/view/29310
[2] Hosmer, D.W., Lemeshow, S. and Sturdivant, R.X. (2013). Applied Logistic Regression, 3rd ed., New York: Wiley.
[3] Chambers, J. M. and Hastie, T. J. (1992). Statistical Models in S. Wadsworth & Brooks/Cole.
Examples
#library(lsm)
#1. AGE and Coronary Heart Disease (CHD) Status of 100 subjects:
# library(lsm)
# library(tidyverse)
# datos <- lsm::chdage
# attach(datos)
# modelo <- lsm(CHD ~ AGE, data=datos)
# plot(modelo, type = "scatter")
# plot(modelo, type = "scatter", title = "Villalba-llinas lsm")
# plot(modelo, type = "probability", xlab = "Elainys")
# plot(modelo, type = "Logit", color = "blue")
# plot(modelo, type = "odds", size = 3)